РОСЖЕЛДОР

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Ростовский государственный университет путей сообщения» (ФГБОУ ВО РГУПС)

Т.Л. Риполь-Сарагоси, А.Б. Кууск

НЕТРАДИЦИОННЫЕ И ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ

Учебно-методическое пособие к лабораторным работам Рецензент – доктор технических наук, профессор В.А. Финоченко

Риполь-Сарагоси, Т.Л.

Нетрадиционные и возобновляемые источники энергии: учебнометодическое пособие к лабораторным работам / Т.Л. Риполь-Сарагоси, А.Б. Кууск; ФГБОУ ВО РГУПС. – Ростов н/Д, 2017. - 20 с.

Пособие к лабораторному практикуму по курсу «Нетрадиционные и возобновляемые источники энергии» для направления подготовки «Теплоэнергетика и теплотехника» призвано помочь студентам в освоении методик проведения испытаний и расчетов по определению энергетической эффективности объектов нетрадиционной энергетики. Пособие содержит справочный материал, описание лабораторных установок и методики проведения испытаний и расчетов по разделам курса «Нетрадиционные и возобновляемые источники энергии».

Предназначено для студентов направления подготовки «Теплоэнергетика и теплотехника».

Одобрено к изданию кафедрой «Теплоэнергетика на железнодорожном транспорте».

СОДЕРЖАНИЕ

Введение	5
Лабораторная работа № 1. Анализ ветроэнергетического	6
потенциала	
Лабораторная работа № 2. Сравнение распределения Рэлея с	10
результатами метеорологических наблюдений.	
Лабораторная работа № 3. Испытание солнечного коллектора	13
Лабораторная работа № 4. Исследование возможности получения	18
энергии ПЭС в заливах и эстуариях	
Библиографический список	20

Введение

Сегодня как никогда остро стоят вопросы экономии энергетических и топливных ресурсов, а также защиты окружающей среды. Для успешной работы инженерам-теплотехникам следует уметь правильно анализировать условия, по возможности использовать энергосберегающие технологии, к которым относится также использование нетрадиционных и возобновляемых источников энергии. А для этого необходимо иметь теоретическую базу и знать типовые методики расчетов.

В пособии содержится материал для проведения лабораторных занятий по курсу «Нетрадиционные и возобновляемые источники энергии», изучаемого студентами специальности «Промышленная теплоэнергетика» на 3 и 4 курсе. Этот материал включает как описание лабораторных установок и исходных данных для проведения лабораторного практимума по разделам «Ветроэнергетика», «Энергия солнца», «Энергия океана» являющимся составными частями курса, так и необходимые теоретические основы для их успешного выполнения и защиты. В теоретических разделах пособия приводятся методики анализа и расчета, например, ветроэнергетического потенциала в какой-либо местности.

Так же содержатся необходимые справочные данные и аналитические зависимости для некоторых данных, представленных в справочной литературе.

Лабораторная работа № 1 «Анализ ветроэнергетического потенциала»

Цель работы Изучение методики определения ветроэнергетического потенциала местности. Получение навыков расчета энергетических параметров ветра.

В большинстве прикладных задач ветроэнергетики гораздо важнее знать не суммарное количество энергии, которое может выработать ветроустановка, например, за год, а ту мощность, которую она может обеспечивать постоянно. При сильном ветре, от 10 до 12 м/с, ветроустановки вырабатывают достаточно электроэнергии, которую иногда даже приходится сбрасывать в систему или запасать. Трудности возникают в периоды длительного затишья или слабого ветра. Поэтому для ветроэнергетики является законом считать районы со средней скоростью ветра менее 5 м/с малопригодными для размещения ветроустановок, а со скоростью 8 м/с — очень хорошими. Но независимо от этого во всех случаях требуется тщательный выбор параметров ветроустановок применительно к местным метеоусловиям.

1. Описание методики измерений и расчетов

Для проведения анализа ветроэнеретического потенциала требуется предварительно проводить в течение года ежедневные 5-ти кратные измерения скорости ветра с равными промежутками времени: в 9 ч, 12 ч, 15 ч, 18 ч и в 21ч.

В данной лабораторной работе используется база данных метеоизмерений, полученная для системы оптимизации теплопотребления энергетического факультета РГУПС. Измерения проводились ежедневно в течение одного года с интервалом 3 часа.

Порядок обработки результатов измерений следующий [6].

1. Результаты измерений скорости ветра u1, м/с, объединяются в группы

с интервалом Δu . Общее число измерений N = 2912.

2. Поскольку измерения скорости проводились на высоте h1 = 2м, а для оценки энергетического потенциала нужна скорость ветра u, м/с, на высоте предполагаемой установки ветротурбин h, определение скорости ветра на высоте h выполняется с помощью известной аппроксимационной зависимости

$$u = u_1 (h/h_1)^{1/5} (2.1)$$

где *h* принимается равной 100 м.

3. Определяется величина вероятностного распределения скорости ветра

$$\Phi u = Nui/N, \tag{2.2}$$

где N_{ui} — число измерений в i-ом скоростном интервале.

Строится зависимость $\Phi_u = f(u)$. Произведение $\Phi_u \Delta u$ может быть интерпретировано как часть времени года, в течение которого скорость ветра имеет значения, заключенные в интервале от u до $u + \Delta u$.

4. Среднее значение скорости ветра u_c , м/с, определяется соотношением

$$u_c = \sum u_i / N, \tag{2.3}$$

где $\sum u_i$ – сумма всех измеренных значений скорости.

5. Определяется вероятность $\Phi u > u$ і появления ветра со скоростью u, большей некоторой заданной скорости u і, для чего складываются вероятности всех скоростных интервалов, в которых u > u і.

Вероятность $\Phi u > u$ 'может быть интерпретирована как часть времени года, в течение которого ветры дуют со скоростью, большей u '.

Строится зависимость $\Phi u > u' = f(u)$.

6. Мощность ветрового потока единичного сечения Pu, Вт определяется

$$P_u = \rho u^3 / 2$$
, (2.4)

где ρ — плотность воздуха, принимается равной 1,3 кг/м³.

Произведение P Φ_u представляет собой функцию распределения энергии ветра. Строится зависимость P $\Phi_u = f(u)$.

7. Строится зависимость $Pu = f(\Phi u > u')$, позволяющая определить вероятность ожидания ветрового потока заданной мощности.

Все данные измерений и расчетов заносятся в таблицу и обрабатываются в EXCEL. В таблице 2.1 частично представлены результаты измерений и расчетов.

После выполнения обработки измерений и расчетов необходимо провести анализ полученных результатов.

Таблица 2.1 Статистический анализ результатов измерений скорости ветра г. Ростов-на-Дону

и, м/с	N	Φ_u	$\Phi_{u^{>}u}$,	P_u , кВт/м2	$P_u \Phi_u$
34,9	1				
32,8	1				
28,4	2				
26,2	15				
24,05	9				
21,9	33				
19,7	61				
17,5	97				
15,3	145				
3,1	212				
10,9	348				
8,7	407				
6,5	548				
4,3	604				
2,1	66				

0	363		
Всего	2912		

2. Анализ полученных результатов

- 1. Пользуясь построенной зависимостью $\Phi_u = f(u)$, необходимо сравнить среднее значение скорости ветра с наиболее вероятным значением скорости ветра в данной местности, а также с расчетной скоростью, принимаемой для проектирования ВЭУ (u = 10 12 м/с).
- 2. Пользуясь построенной зависимостью $P \Phi_u = f(u)$, определить значение скорости при которой функция распределения энергии ветра имеет максимум и сравнить его с наиболее вероятным значением скорости ветра в данной местности.
- 3. Пользуясь построенной зависимостью $P_u = f(\Phi_{u>u'})$, определить вероятность ожидания ветрового потока мощностью 0,5; 1 и 2 кВт.
- 4. По результатам проведенного анализа сделать выводы и составить отчет.

Контрольные вопросы

- 1. Какими параметрами характеризуется энергетическая ценность ветра?
- 2. Как определяется средняя скорость ветра в данной местности?
- 3. Как определяется энергия ветрового потока и как она соотносится со скоростью ветра?
- 4. Как определяется вероятность ветра с определенной скоростью в данной местности?
- 5. Как определяется мощность ветрового потока единичного сечения?
- 6. Что такое ветроэнергетический кадастр и для чего он составляется?
- 7. Как определяется мощность ветроэнергетической установки?
- 8. Как определяется вероятность ожидания ветрового потока определенной мощности?

Лабораторная работа № 2 «Сравнение распределения Рэлея с результатами метеорологических наблюдений».

Цель работы Проведение сравнительного анализа результатов метеорологических измерений с теоретической зависимостью распределения Рэлея.

Проведенный в лабораторной работе № 1 анализ характеристик ветра состоял в математической обработке массива экспериментальных данных с использованием методов математической статистики. Этот анализ существенно бы упростился, если бы для функции распределения вероятности скорости ветра имелось аналитическое выражение, соответствующее экспериментальным данным. В этом случае, во-первых, резко бы сократилось необходимое количество измерений скорости ветра, во-вторых, появилась бы возможность аналитического расчета характеристик ветроустановок.

1. Описание методики проведения анализа

Для проведения анализа функции распределения скорости ветра, основанной на экспериментальных метеорологических данных, требуется сравнить экспериментальные зависимости, полученные в лабораторной работе № 1 с теоретическим распределением Рэлея.

Порядок анализа следующий [6].

1. Для распределения Рэлея справедливо равенство $\Phi_{u>u'} = \exp[(-\pi/4)\odot (u'/u)^2], \tag{2.5}$

где $\Phi_{u>u'}$ — вероятность появления ветра со скоростью u, м/с, большей некоторой заданной скорости u', м/с; u — среднее значение скорости, м/с.

Следует, задаваясь значениями скорости u', м/с, из диапазона реальных скоростей ветра и используя среднее значение скорости u, м/с, полученное в лабораторной работе \mathbb{N} 1, построить теоретическую зависимость по формуле (2.5.). Результаты занести в таблицу 2.2.

Относительная погрешность определяется как

$$\delta = (\Phi_{u > u'} \text{Teop} - \Phi_{u > u' \text{SKCII}}) / \Phi_{u > u' \text{Teop}} 100\%.$$
 (2.6)

2. Для распределения Рэлея справедливо равенство

$$(u^3)^{1/3} = 1{,}24_u . (2.7)$$

Следует проверить его, подставив среднее значение скорости ветра в формулу (2.7), полученное в предыдущей лабораторной работе.

3. Для распределения Рэлея справедливо утверждение, что вероятность скорости Φ_u максимальна при значении скорости

$$u = (2/\pi)^{1/2^{\circ}} u = 0.8u . (2.8)$$

Следует определить скорость, при которой вероятность максимальна, подставив среднее значение скорости ветра, полученное в предыдущей лабораторной работе в формулу (2.8). Погрешность определяется аналогично (2.6).

4. Для распределения Рэлея справедливо утверждение, что функция Φu и 3 максимальна при значении скорости

$$u = 2 (2/\pi)^{1/2} u = 1.6 u. (2.9)$$

Следует построить зависимость $\Phi_u \circ u^3 = f(u)$, используя значения скорости ветра в диапазоне реальных значений и проверить это утверждение, подставив среднее значение скорости ветра в формулу (2.9), полученное в предыдущей лабораторной работе. Погрешность определяется аналогично (2.6). Результаты расчетов занести в таблицу 2.2.

Таблица 2.2

Протокол измерений и расчетов

и, м/с	$\Phi u > u'$	$\Phi u > u'$	δ, % для	$\delta, \%$ для	$\delta, \%$ для
	(эксп.)	(теор.)	$\Phi u > u$	Фи	Фи* и3
	,				

2. Анализ полученных результатов

1. Пользуясь построенной в предыдущей лабораторной работе

зависимостью $\Phi_{u>u}=f(u)$, необходимо сравнить ее с теоретической зависимостью $\Phi_{u>u}$, рассчитанной по формуле (2.5).

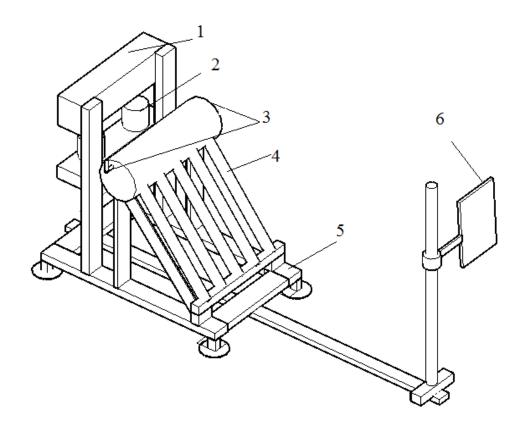
- 2. Пользуясь построенной зависимостью $\Phi_u = f(u)$, экспериментально полученное значение наиболее вероятной скорости, при которой функция распределения скорости ветра имеет максимум, сравнить с теоретическим, рассчитанным по формуле (2.8).
- 3. По построенной зависимости $\Phi^* u^3 = f(u)$ определить максимальное значение функции и сравнить его с теоретически определенным значением скорости по формуле (2.9).
- 4. По результатам проведенного анализа сделать выводы и составить отчет.

Контрольные вопросы

- 1. Какие функции распределения случайной величины вы знаете?
- 2. Какая функция распределения наиболее точно описывает распределение скорости ветра?
- 3. Как определяется вероятностное распределение скорости ветрового потока?
- 4. Какие кадастровые характеристики вы знаете?
- 5. Как можно определить разброс скоростей около среднего значения?
- 6. Что показывают закономерности Поморцева и Гуллена?
- 7. Как определяется длительность простоя ветроэнергетической установки?
- 8. Какие линии называют изоплетами?

Лабораторная работа № 3 « Испытание солнечного коллектора»

Цель работы: Определение оптического КПД, коэффициента тепловых потерь коллектора и коэффициента эффективности поглощающей панели


Описание лабораторного испытательного стенда

Стенд, представленный на рисунке 7, позволит проводить испытания по определению: общего коэффициента тепловых потерь коллектора, оптического

КПД коллектора и коэффициента эффективности поглощающей панели, также можно проводить испытания при разном угле наклона, чтобы оценить влияние сил гравитации на работу коллектора .

Оборудование стенда:

- стол-стенд для размещения солнечного коллектора;
- солнечный коллектор максимальной мощностью 600 Вт фирмы KONFULSO;
- система измерения температуры воды до и после солнечного коллектора со стеклянными жидкостными термометрами;
- измеритель плотности теплового потока ИПП-2;
- пирометр для измерения температуры излучателя (200...1500 °C) типа Кельвин Компакт 1500/175;
- обогреватель-излучатель инфракрасный типа Timberk TCH Q1 800, 2 шт;
- однофазный автотрансформатор Латр TDGC2-1 ЭНЕРГИЯ;
- лазерный дальномер типа Bosch PLR 25;
- галогеновый прожектор MATRIX 93210 мощностью каждый 500 Вт, насос DAB VA 25/180;
- расходомер СВ-15 Г;
- термоанемометр тема типа testo 425.

1 -пульт управления; 2— однофазный автотрансформатор; 3 - места установки термометров; 4 — солнечный коллектор; 5 — стол-стенд для размещения солнечного коллектора; 6 — обогреватель-излучатель инфракрасный/галогеновый прожектор

Рисунок 7 — Стенд для испытания солнечного коллектора

Методика испытания солнечного коллектора

Испытания по определению оптического КПД, коэффициента тепловых потерь коллектора и коэффициента эффективности поглощающей панели выполняют на теплогидравлическом стенде, установленном в лабораторном помещении. Испытуемый коллектор крепят на специальной подставке под углом 30° к горизонту. Коллектор присоединяют к трубопроводам стенда. При наличии у коллектора одного входного и одного выходного патрубков трубопровод (2)

подсоединяют к верхнему входному патрубку, а трубопровод (5) – к нижнему выходному. Контур стенда заполняют водой. Необходимо убедиться в отсутствии воздуха в контуре. Включают насос термостата и по расходомеру устанавливают расход воды через коллектор 25 кг/(м^{2*} ч).

Условия проведения испытаний:

- на вход коллектора подают воду температурой 40, 50, 60 и 70 °C. Изменение температуры воды осуществляют от испытания к испытанию;
- установленный расход воды через коллектор в течение испытания не должен колебаться более чем на \pm 1 %;

-испытания следует проводить в стационарном режиме. Условия испытаний считают стационарными, если температура воды на входе и выходе из коллектора и температура окружающего воздуха в течение 10 мин не изменялась более чем на $0.1~^{\circ}$ С.

Установленные параметры регистрируют (через 20 мин после выхода на стационарный режим).

Регистрации подлежит:

- -температура воды на выходе и входе коллектора;
- -температура окружающего воздуха;
- -расход воды через коллектор.

По итогам испытаний определяют общий коэффициент тепловых потерь коллектора и коэффициента эффективности поглощающей панели по формуле

$$F' \cdot U_L = \frac{G \cdot c_p(t_{ex} - t_{eblx})}{A(\overline{t_{oc}} - t_{e})}$$

где U_L – общий коэффициент тепловых потерь, $B\tau/(M^2 \cdot {}^0C)$;

F' – коэффициент эффективности поглощающей панели;

G – расход воды через коллектор, кг/ч;

A – площадь тепловоспринимающей поверхности, определяется измерением высоты и диаметра теплопоглощающих труб, M^2 ;

 c_p – теплоемкость воды, Bт·ч/(кг·°C);

 $t_{\text{вх}}$ — температура воды на входе в коллектор, °C: $t_{\text{вых}}$ — температура воды на выходе из коллектора, °C; $t_{\text{в}}$ — температура воздуха, окружающего испытываемый коллектор, °C; $t_{\text{ж}}$ — средняя температура жидкости, равная полусумме температуры воды на входе и выходе из коллектора.

Для занесения в паспорт коллектора по результатам расчетов строят график зависимости ($F' \cdot U_L$) от $\mathfrak{t}_{\mathtt{w}}$ и определяют произведение ($F' \cdot U_L$)

- для коллектора с прозрачной изоляцией при средней температуре ; C50 $t_{\rm **}$ = 50 $^{\rm 0}C$
 - для коллектора без прозрачной изоляции при $t_{x} = 50$ °C.
 - 4.6 Организация испытаний по определению оптического КПД коллектора

Определение произведения оптического КПД коллектора и коэффициента эффективности поглощающей панели F'

Испытания проводятся в натурных условиях на теплогидравлическом стенде. Подготовка к испытаниям осуществляется по п. 10.5. Трубопровод (2) подсоединяют к нижнему входному патрубку, а трубопровод (5) к верхнему выходному.

Условия проведения испытаний

Температура наружного воздуха должна быть не ниже 15 °C. Скорость ветра во время испытаний коллектора не должна превышать 5 м/с. Измерения скорости ветра следует проводить в непосредственной близости от коллектора на высоте, соответствующей половине высоты коллектора. Для измерения скорости ветра используют термоанемометр типа testo 425.

Испытания проводят при расходе воды через коллектор 25 кг/(м2·ч) и температуре воды на входе в коллектор 20, 30, 40 и 50 °C. Изменение температуры воды осуществляют от испытания к испытанию. Таким образом следует проводить не менее 4 испытаний.

Продолжительность испытаний должна быть не менее 2 ч. За это время нижеперечисленные параметры не должны отклоняться более чем на, %:

- ± 5 интенсивность излучения излучателя;
- ± 5 температура наружного воздуха;
- ± 1 температура воды на входе в коллектор;

использовать дополнительные приборы:

- ± 1 расход теплоносителя;
- ± 1 температура воды на выходе из коллектора последние 15 мин испыта-ния. В процессе испытаний, кроме приборов теплогидравлического стенда, следует
- пиранометр типа Кельвин Компакт 1500/175 в паре со вторичным прибором;
- термоанемометр типа testo 425.

В испытаниях одновременно регистрируют (если в течение 15 мин соблюдаются условия п. 10.5):

- температура поверхности излучения в плоскости коллектора;
- температура окружающего воздуха;
- температура воды на входе в коллектор;
- температура воды на выходе из коллектора;
- расход воды через коллектор.

По результатам испытаний определяют теплопроизводителность коллектора (Qк) по формуле

$$\mathbf{Q}_{\mathbf{K}} = \frac{G \cdot c_p}{A} (t_{\text{вых}} - t_{\text{ex}}) \cdot \tau_0$$
 и комплекс $\frac{1}{E} \left(\frac{t_{\text{ex}} + t_{\text{вых}}}{2} - t_{\text{e}} \right)$,

где E — плотность потока излучения в плоскости коллектора, рассчитывается по измеренной температуре поверхности излучателя, $B\tau/m2$;

 τ_0 – время проведения испытания, ч.

Для занесения в паспорт коллектора по результатам расчетов строят зависимость $Q_{\kappa}(E\cdot \tau_0)$ от $\frac{1}{E}\Big(\frac{t_{\rm ex}+t_{\rm sbix}}{2}-t_{\rm e}\Big)$. Пересечение построенной зависимости с осью ординат дает искомое значение $F'\cdot(\tau\cdot\alpha)$ коллектора.

Лабораторная работа № 4 «Исследование возможности получения энергии ПЭС в заливах и эстуариях»

Цель работы Ознакомление с методикой определения возможного резонанса в заливе и способом определения максимально возможной снимаемой мощности приливной электростанции за один цикл прилив-отлив.

Анализ резонансных условий достаточно сложен из-за постоянно меняющейся топологии дна и береговой линии заливов и эстуариев. Поэтому здесь производится всего лишь прикидочный расчет. При подходящих условиях высота прилива может усиливаться до 10 м. Малопригодными для размещения ПЭС считаются заливы и эстуарии, высота прилива в которых не превышает 2 м. Но независимо от этого во всех случаях требуется тщательный анализ местных условий.

1. Описание методики измерений и расчетов

- 1. По картам выданным преподавателем каждому студенту, с помощью Масштабной линейки определяются глубина залива h, м; длина протяженности Залива в глубь материковой зоны L, м; площадь возможного приливного бассейна S, м². Результаты измерений заносятся в таблицу.
 - 2. Определяется скорость движения приливной волны c, м/с

$$c = (gh)_{1/2}$$
,

где g – ускорение силы тяжести, равное 9,81 м/с².

3. Из условия возникновения резонанса (1.7-1.11) в заливе определяется, есть ли соответствующие условия в данном заливе $j=4L/(c\cdot 45000)$ (2.11) где j — нечетное целое. Значение j занести в таблицу 2.4.

4. Определяется максимально возможная мощность P, в одном цикле ПЭС (прилив-отлив), Вт

$$P = \rho g S \odot R^2, \qquad (2.12)$$

где ρ — плотность воды, кг/м³; R — перепад уровней, принимаемый при нечетном, целом j — 6 м, при нечетном, с дробной частью — 3 м. Результат занести в таблицу 2.4.

Протокол измерений и результатов

	1						
Месторасположение	<i>L</i> , м	<i>h</i> , м	S, M2	<i>c</i> , м/с	j	<i>R</i> , м	P, BT
залива							

2. Анализ полученных результатов

- 1. Пользуясь полученными результатами, проведите анализ возможности строительства ПЭС в рассматриваемом заливе.
- 2. По результатам проведенного анализа сделать выводы и составить отчет.

Контрольные вопросы

- 1. Какие условия способствуют усилению прилива в заливах и эстуариях рек?
- 2. Как определяется скорость приливной волны?
- 3. Как определяется максимально получаемая мощность в одном цикле ПЭС?
- 4. Чему равен период вынужденных колебаний прилива в море?
- 5. Чему равен период собственных колебаний прилива в заливе?
- 6. Чему способствует применение насосного режима агрегатов на ПЭС?
- 7. Чему способствует применение многобассейной схемы ПЭС?
- 8. Какие турбины применяют на ПЭС?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. **Баскаков А.П.** Нетрадиционные и возобновляемые источники энергии. Введение в специальность.: учеб. пособие. Екатеринбург: УГТУ-УПИ, 2004.
- 2. Баскаков А.П. Нетрадиционные и возобновляемые источники энергии.
- Ч.1.: [в 2 ч.]: учеб. пособие. Ч. 1. Екатеринбург: УГТУ-УПИ, 2004.
- 3. Баскаков А.П. Нетрадиционные и возобновляемые источники энергии.
- Ч.1.: [в 2 ч.]: учеб. пособие. Ч. 1. Екатеринбург: УГТУ-УПИ, 2005.
 - 4. Баскаков А.П. Нетрадиционные и возобновляемые источники энергии.
- Ч.2.: [в 2 ч.] : учеб. пособие. Ч. 2. Екатеринбург: УГТУ-УПИ, 2005с.
 - 5. Баскаков А.П. Нетрадиционные и возобновляемые источники энергии.
- Ч.2.: [в 2 ч.]: учеб. пособие. Ч. 2. Екатеринбург: УГТУ-УПИ, 2006.
- **6.Твайделл Д., Уэйр А.** Возобновляемые источники энергии. М.: Энергоатомиздат, 1990.

Учебное издание

Риполь-Сарагоси Татьяна Леонидовна **Кууск** Анатолий Борисович

НЕТРАДИЦИОННЫЕ И ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ

Печатается в авторской редакции

Технический редактор Н.С. Федорова

Подписано в печать 29.11.17. Формат 60×84/16. Бумага газетная. Ризография. Усл. печ. л. 1,39. Тираж экз. Изд. № 90888. Заказ .

Редакционно-издательский центр ФГБОУ ВО РГУПС.

Адрес университета: 344038, г. Ростов н/Д, пл. Ростовского Стрелкового Полка Народного Ополчения, д. 2.