РОСЖЕЛДОР

Федеральное государственное бюджетное образовательное учреждение высшего образования

Ростовский государственный университет путей сообщения (ФГБОУ ВО РГУПС)

Лискинский техникум железнодорожного транспорта имени И.В. Ковалева (ЛТЖТ – филиал РГУПС)

МДК.01.01 КОНСТРУКЦИЯ, ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ ПОДВИЖНОГО СОСТАВА

Методические указания по выполнению лабораторных работ по теме: «Холодильные машины и установки кондиционирования воздуха» для студентов очной формы обучения специальности

23.02.06 Техническая эксплуатация подвижного состава железных дорог (Вагоны)

Методические указания по выполнению лабораторных занятий по МДК.01.01. Холодильные машины и установки кондиционирования воздуха предназначены для студентов специальности 23.02.06 «Техническая эксплуатация подвижного состава железных дорог» и имеют цель оказать помощь в выполнении лабораторных работ.

Автор Натаров Р.Н., преподаватель ЛТЖТ – филиала РГУПС

Рассмотрено на заседании цикловой комиссии профессиональных модулей специальности 23.02.06, протокол от 01.09.2016 №1

Рекомендовано методическим советом ЛТЖТ — филиала РГУПС, протокол от 02.09.2016 N21

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
ОБЩИЕ УКАЗАНИЯ ПО ОФОРМЛЕНИЮ ЛАБОРАТОРНЫХ РАБОТ	
Лабораторная работа № 1	6
Лабораторная работа №2	10
Лабораторная работа №3	13
Лабораторная работа №4	17
ЗАКЛЮЧЕНИЕ	21
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	22
ПРИЛОЖЕНИЕ 1	23
ПРИЛОЖЕНИЕ 2	24

ВВЕДЕНИЕ

Детали и узлы вагонов в процессе эксплуатации подвергаются износу и повреждениям. Для поддержания вагонов в работоспособном состоянии предусмотрен комплекс мероприятий, важнейшим из которых является ремонт. Ремонтное производство непрерывно развивается и совершенствуется на основе его механизации и автоматизации, применения современных средств технической диагностики, использования новых технологических процессов, применения новых передовых методов труда, новых форм управления, планирования и организации, контроля и качества, предупреждения повреждений и т.д. На него влияют также изменения в условиях и организации эксплуатации, появления новых вагонов, отличающихся как новыми конструктивными решениями, так и применением новых материалов и методов их обработки.

Основными функциями ремонтного производства является предупреждение и устранение износов и повреждений. Ремонтное производство состоит из системы, организации и технологии ремонта.

Система ремонта определяет порядок поддержания вагонов в работоспособном и исправном состоянии и охватывает такие понятия, как вид технического обслуживания или ремонта, структура ремонтного цикла и периодичность ремонта.

Организация ремонта включает в себя принципы и методы технического обслуживания и ремонта, вопросы концентрации, специализации, научной организации труда, а также вопросы внедрения поточных линий и механизированных рабочих мест, механизация и автоматизация производства, внедрение современных средств технической диагностики и других достижений научно – технического прогресса.

Технология ремонта имеет своей целью обеспечить высокое качество ремонта вагонов с наименьшими затратами трудовых, материальных и энергетических ресурсов, полное использование оборудования, оснастки и производственных площадей, сокращение простоя вагонов в ремонте.

В данном методическом пособии рассмотрены лабораторные работы по теме: «Холодильные машины и установки кондиционирования воздуха» для вагонов пассажирского и рефрижераторного парка.

ОБЩИЕ УКАЗАНИЯ ПО ОФОРМЛЕНИЮ ЛАБОРАТОРНЫХ РАБОТ

Отчеты по лабораторным занятиям выполняются согласно единым требованиям по оформлению конструкторской документации на листах формата A4. Рисунки и диаграммы выполняются на миллиметровой бумаге формата A4 и A3.

Текст в отчетах лабораторных работ печатается на компьютере шрифтом 12 кегля или 14 кегля через одинарный интервал.

Отчеты по лабораторным работам должны подшиваться в папку с титульным листом. Образец оформления титульного листа приведен в приложении 1.

На первом листе (после титульного листа) указывается перечень (содержание) лабораторных работ, который оформляется в соответствии с ЕСКД (пример приведен в приложении 2). На последнем листе перечисляется использованная литература.

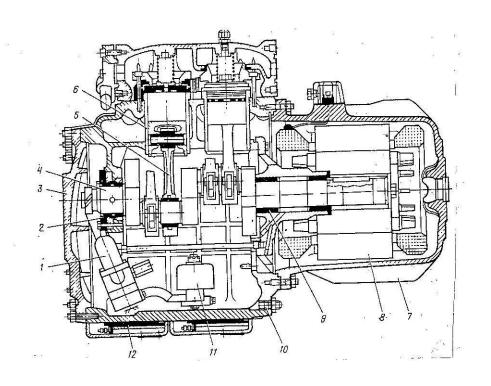
Лабораторная работа № 1

ИССЛЕДОВАНИЕ КОНСТРУКЦИИ КОМПРЕССОРА ХОЛОДИЛЬНЫХ МАШИН.

Цель: Изучить конструкцию компрессора холодильной машины.

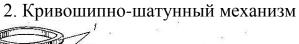
Содержание отчета.

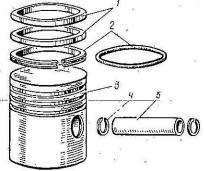
- 1. Устройство компрессора
- 2. Кривошипно-шатунный механизм
- 3. Система смазки

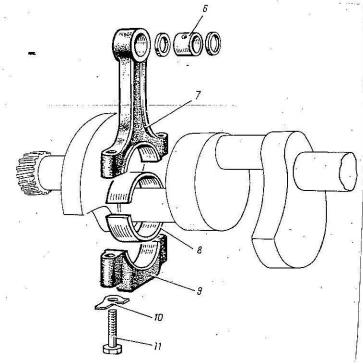

Отчет

1. Устройство компрессора

В холодильном агрегате ФАЛ 056/7 применяется полугерметичный компрессор со встроенным электродвигателем, двухступенчатого сжатия и автоматическим запорным вентилем.

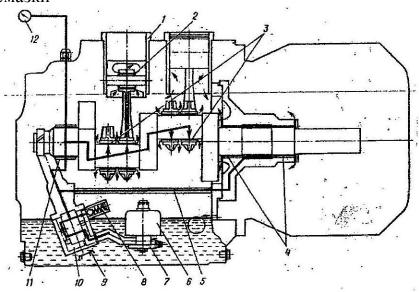

Тип	2H2-56/7, 5-105/7
Диаметр цилиндра, мм	70
Ход поршня, мм	60
Число цилиндров	4 (три низкого и один высокого давления)
Расположение цилиндров	2×90° V-образное
Частота вращения коленчатого вала, об/мин	1450
Объемная подача хладагента, м ³ /ч	60
Габаритные размеры, мм	805×545×700
Масса (с маслом), кг	255
Количество заправляемого масла, кг	6,25
Компрессорное масло	Хф 12-16
Встроенный двигатель	KEP 108 M 4c EX
Номинальная мощность, кВт	7,5


					23.02.06 ПМ 01 МДК 01.01 ЛР 1				
Измн.	Лист	№ докум.	Подпись	Дата	23.02.00 111.1 01 111.01 01.01 011				
Разрі	аб.					/lum.	Лист	Листов	
Прове	ер.				Исследование конструкции компрессора холодильных ма- 				
Н. Ко	нтр.					ЛТЖТ – филиал РГУПС		ı РГУПС B-	
Утве	рд.				— шин				



- 1. Маслонасос
- 2. Опорный подшипник
- 3. Крышка корпус
- 4. Коленчатый вал
- 5. Шатунно-поршневая группа
- 6. Гильзы
- 7. Корпус электродвигателя
- 8. Асинхронный электродвигатель
- 9. Коренной подшипник
- 10. Маслоспускные пробки
- 11. Фильтр
- 12. Элемент электронагревательной масляной ванны

						Лисп
					23.02.06 ПМ 01 МДК 01.01 ЛР 01	
Изм.	Лист	№ докум.	Подпись	Дата		



- 1. Два компрессионные кольца
- 2. Маслосъемное кольцо
- 3. Поршень
- 4. Стопорные кольца
- 5. Стальной палец
- 6. Подшипник
- 7. Стальной шатун
- 8. Стальной вкладыш
- 9. Крышка шатуна
- 10. Предохранительные пластины
- 11. Шатунные болты

					22.02.06 FD 4.01 M FH 6.1.01 FD 0.1	Лист
					23.02.06 ПМ 01 МДК 01.01 ЛР 01	
Изм.	Лист	№ докум.	Подпись	Дата		

3. Система смазки

- 1. Гильзы цилиндров
- 2. Шестерня приводов насосов
- 3. Шатунный подшипник
- 4. Коренной подшипник
- 5. Трубопровод
- 6. Шайбы всасывающий фильтр
- 7. Колонки магнитного фильтра
- 8. Редукционный клапан
- 9. Вихревое колесо
- 10. Hacoc
- 11. Передний опорный подшипник
- 12. Манометр давления масла

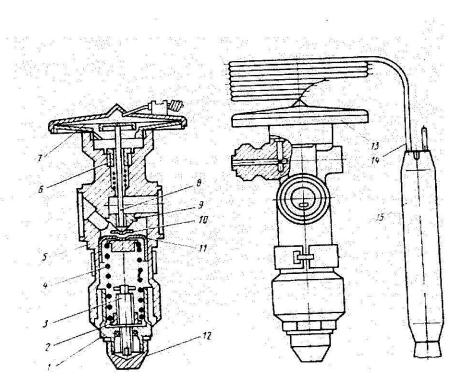
Вывод:

						Лист
					23.02.06 ПМ 01 МДК 01.01 ЛР 01	
Изм.	Лист	№ докум.	Подпись	Дата		

Лабораторная работа №2

ИССЛЕДОВАНИЕ РАБОТЫ И РЕГУЛИРОВКА ТЕРМОРЕГУЛИРУЮЩЕ-ГО ВЕНТИЛЯ.

Цель: Изучить конструкцию ТРВ и назначения.


Оборудование: Терморегулирующий вентиль 12 ТРВ-10

Содержание отчета:

- 1. Устройство 12ТРВ-10.
- 2. Техническая характеристика.
- 3. Работа.

Отчет

1. Устройство

					23.02.06 ПМ 01 МДК 01.01 ЛР 02			
Измн. Л	ист	№ докум.	Подпись	Дата				
Разраб.					Исследование работы и регу-	Лит. Лист Лист		Листов
Провер.					лировка терморегулирующего			
					лирооки терморегулирующего вентиля	ощего ЛТЖТ – филиал РГУПС		
Н. Конт	p.				оеншиля			ı РГУПС B-
Утверд.								

1. Штуцер
2. Втулка
3. Предельный ход клапана
4. Регулировочная пружина
5. Корпус
6. Сальник
7. Мембрана
8. Толкатель
9. Седло
10. Клапан
11. Стакан
12. Колпачок
13. Головка вентиля
14. Капиллярная трубка
15. Термобаллон
2. Техническая характеристика 12 ТРВ-10. Тип вентиля

					22.02.07.07.13.4.117.01.01.110.0.2
					23.02.06 ПМ 01 МДК 01.01 ЛР 0 2
Изм.	Лист	№ докум.	Подпись	Дата	

Лист

Уравнительная линия......накидная гайка с ниппелем для соединения на пайке трубы 6*1

3. Работа

Принцип работы ТРВ основан на использовании зависимости перегрева паров хладагента, выходящих из испарителя, от тепловой нагрузки на испаритель. Если подавать определенное количество хладагента в испаритель, то при повышении тепловой нагрузки на него возрастает интенсивность кипения хладагента и не вся теплопередающая поверхность будет активно участвовать в работе, а перегрев на выходе из испарителя увеличится.

При снижении же нагрузки на испаритель процесс кипения замедляется пары хладагента перенасыщаются и может наступить «влажный ход» компрессора с последующим его повреждением, при этом перегрев на выходе из испарителя уменьшается.

Регулировка ТРВ осуществляется винтом 3 настройки после отворачивания колпачка 12 специальным ключом. Вращение винта 3 настройки по часовой стрелки-перегрев повышается, а против часовой-уменьшается.

Вывод:

Изм.	Лист	№ докум.	Подпись	Дата

Лабораторная работа №3

ПУСК ХОЛОДИЛЬНОЙ МАШИНЫ, ИССЛЕДОВАНИЕ РЕЖИМА РАБОТЫ, ОСТАНОВКА.

Цель работы: Ознакомится с правилами обслуживания хладоной х/у по инструкции для данной установки. Усвоить порядок подготовки к пуску, пуск, регулирование работы и установки х/у. Научится производить проверку контрольно-измерительных приборов, записывать их в рабочий журнал и производить анализ работы х/у.

Пособия и оборудование: хладоновая холодильная машина; набор гаечных ключей; лакмусовая бумажка или мыльный раствор; галоидная лампа или электронный течеискатель; резиновые перчатки; обтирочный материал; рабочий журнал.

Особые правила техники безопасности.

- 1. Не допускать учащихся к пуску х/м без проведения с ними специального инструктажа по вопросам ТБ и оказания первой медицинской помощи пострадавшему от х/у.
- 2. При работе машины нельзя прикасаться к движущимся и вращающимся частям.
- 3. Нельзя пускать х/у, если не проверенны и не опломбированы манометры и моновакууметры.
- 4. Запрещается пользоваться неисправными или не отрегулированными приборами автоматики.

					23.02.06 ПМ 01 МДК 01.01 ЛР 03			3		
Измн.	Лист	№ докум.	Подпись	Дата						
Разро	1 б.				Пуск холодильной машины,	Лит.	Лист	Листов		
Прове	₽ <i>p</i> .				исследование режима работы,					
					остановка					
H. Koi	нтр.				остиноски	ЛТЖТ – филиал РГУПС В		і РГУПС В-		
Утвер	οд.					,				

- 5. Обнаруженные утечки х/а из системы х/м или компрессора немедленно устраняются учащимся под контролем преподавателя.
- 6. Место утечки определяется специальным индикатором, мыльным раствором или наличию масляных пятен на аппаратах и в трубопроводах.
- 7. Время пуска, остановки, неисправности, обнаруженные во время работы, а также добавление x/a или масла, выпуск воздуха и др. должны заносится в журнал работы x/m.
- 8. Ликвидацию неисправности разрешается производить не менее двум учащимся под контролем преподавателя.
 - 3.2 Оказание первой помощи пострадавшему.
- 1. При отравлении парами аммиака пострадавшего выносят на свежий воздух и делают исскуственное дыхание, затем производится инголяция теплыми парами 2% p-ра лимонной кислоты.
- 2. При обморожении, вызванном попадании жидкого х/а на кожу, обмороженный участок растирают стерильным ватным шариком до восстановления чувствительности и покраснения кожи, затем протирают спиртом и накладывают повязку. Если образовались пузыри, то кожу растирать нельзя.
- 3. В случае попадания жидкости х/а в гла нужно промыть их струей воды (комнатной температуры). Если попал аммиак следует закапать глаза 2-4% раствор борной кислоты при попадании хладона стерильно вазилиновое масло.
 - 4. Содержание отчета.
 - 4.1 Краткая характеристика ХНУ ФАЛ 056/7

- хладопроизводительность
 - мощность нагревательных элементов
 - запраляемость кол-во хладона
 - запрвка хладонового
 - 6 кВт
 - 12-15 кг
 - 6,25

4.2 Подготовка к пуску

- проверить по журналу причину остановки;
- осмотреть машину и убрать лишние предметы;
- проверить наличие ограждения вращающихся частей;
- в ручную повернуть вентиляторы;
- проверить х/у на утечку хладона и масла;

						Лисп
					23.02.06 ПМ 01 МДК 01.01 ЛР 03	
Изм.	Лист	№ докум.	Подпись	Дата		

- проверить уровень хладона в ресивере и масла в компрессоре;
- открыть жалюзи машинного отделения;
- проверить электроаппаратуру открыть запорный вентиль на входе и выходе ресивера и мановакууметры;
- выбрать режим работы;

4.3 Пуск на охлаждение

- поставить пакетный выключатель в положение «пуск»;
- включаются вентиляторы испарителя;
- через одну минуту включается подагрев масляной ванны, затем компрессор, когда давление масла будет равно один атм. откроется АЗВ, закроется байнасная трубка и откроется жидкосный СВ. При Рк=10 атм. включаеются вентиляторы кондеционера.

4.4 Признаки правльной работы

- tк=tн.в+10:14;
- Рк должно быть не более 18,5 атм.;
- t₀ должно быть на 10:14 ниже t груза;
- P₀ должно быть не ниже-0,5 атм.;
- промежуточное давление должно быть больше давления испарения, но меньше давления конденсации;
- давление масла должно быть 2,5:5 атм. больше давления испарения;
- испаритель покрыть инием;
 - всасывающий трубопровод покрыт инием, но не до компрессора;
- головка цилиндра теплая;
- конденсатор внизу и ресивер тепловатые;
- стрелки на нагревательном мановакууметре не дрожат;
- отсутствуют посторонние спуски.

4.5 Остановка

- выключить ХНУ, вентиляторы продолжают работать;
- при остановке на длительное время хладон откачивают в ресивер, закрывают вентиля и смазывают их солидолом.

	·			
Изм	Aucm	Nº gokum	Подпись	Лата

4.6 Журнал работы холодильной машины

	$t_{rp.}$	t _{н.в.}	t_0	P_0	t_{κ}	Рк	P_{np}	Рм
Нормальная работа	0	+20	-10	1,23	30	6,6	4	4
Воздух в системе					40	8		
Масло Холод. Агента			-25	0,3	15	3	1,5	

Вывод:

Изм.	Лист	№ докум.	Подпись	Дата

Лабораторная работа №4

ИССЛЕДОВАНИЕ КОНСТРУКЦИИ УСТАНОВКИ КОНДИЦИОНИРОВА-НИЯ ВОЗДУХА.

Цель: Изучить конструкцию установки кондиционирования воздуха.

Содержание отчета.

- 1. Техническая характеристика.
- 2. Устройство.
- 3. Принцип действия.

Отчет

1. Техническая характеристика.

Характеристика	Величина
Номинальная холодопроизводительность при работе в режиме охлаждения, кВт	28
Суммарная мощность двух электрических воздухонагревателей, кВт	2×30κBτ
Суммарная мощность двух водяных воздухонагревателей, кВт	2×10,0 кВт
Температура воды на входе в водяные воздухонагреватели ,°С, не менее	90
Расход воды через водяные воздухонагреватели, м3/час, не менее	1,8
Расход воздуха на выходе установки, обеспечиваемый центробежным вентилятором воздухоохладителей, м3/час	4000+20%
Избыточное давление на выходе из установки, создаваемое центробежным вентилятором воздухоохладителей, Па, не менее	300

					23.02.06 ПМ 01 МДК 01.01 ЛР 04				
Измн.	Лист	№ докум.	Подпись	Дата					
Разра	1 б.					Лит	7.	Лист	Листов
Прове	₽ <i>p.</i>				Исследование конструкции			2	
					установки кондиционирования	ЛТЖТ – филиал РГУПС В-			
Н. Ко	нтр.				воздуха			і РГУПС В-	
Утвер	οд.				uusuyxu				

Масса хладагента, заправляемого в хо- лодильную машину, кг,не более	10
Напряжение питания потребителей электроэнергии установки:	110-380 В переменного синусоидального трехфазного тока частотой от 25 до
-электродвигатель компрессора	70 Гц соответственно, мощностью до 15
	кВт
-электродвигатель осевого вентилятора	110-380 В переменного синусоидально-
	го трехфазного тока частотой от 25 до
	70 Гц соответственно мощностью до 2,9
	кВт

2. Устройство.

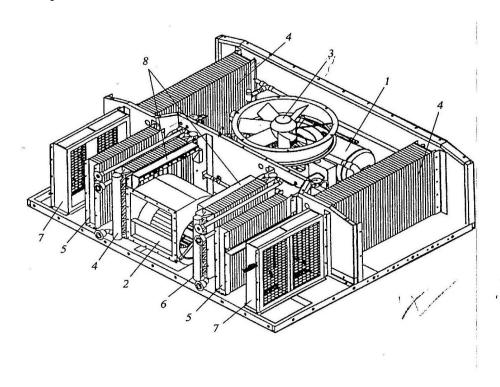


Рис 4.1 Компоновочная схема установки: 1-компрессор; 2-центробежный вентилятор; 3-осевой вентилятор; 4-конденсатор; 5-воздухоохладители; 6-водяные воздухонагреватели; 7-фильтрующие ячейки; 8-электрические воздухонагреватели.

·	·		·	·
Изм.	Лист	№ докум.	Подпись	Дата

3. Принцип действия.

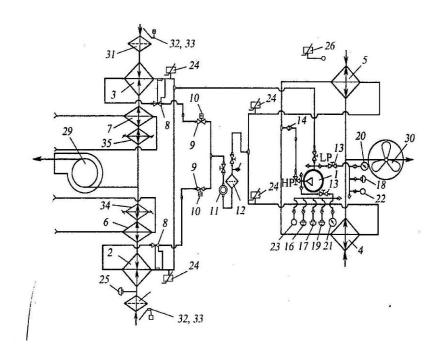


Рис 4.2 Схема пневмогидравлическая принципиальная.

При работе в режиме охлаждения задействуются холодильная машина и вентиляционное оборудование. Водяные и электрические воздухонагреватели в этом случае отключены.

Охлаждение воздуха внутри вагона производится следующим образом (см. рис.4.1). При включенной холодильной машине под действием разряжения, создаваемого центробежным вентилятором 29, в установку через отверстия воздухоприемников внутреннего воздуха поступает рециркулирующих воздух из вагона. Одновременно через отверстия воздухоприемников наружного воздуха всасывается наружный воздух. При этом расход наружного воздуха может регулироваться с помощью воздушных клапанов с электроприводом 32. Потоки внутреннего и наружного воздуха перемешиваются в камерах смешения и смешенный поток, пройдя через фильтрующие ячейки 31 поступает в воздухоохладители 2 и 3, после чего нагнетается внутрь вагона с помощью вентилятора 29 через отверстие воздухораспределителей. Часть поданного в вагон воздуха после его прохождения по вагону вновь возвращается в установку, а часть воздуха выходит наружу за счет негермитичности конструкции вагона.

Требуемая температура поверхности воздухоохладителей 2 и 3 при работе установки в режиме охлаждения обеспечивается следующим образом. Винтовый компрессор 1 холодильной машины сжимает и нагнетает пары хлада-

							Лист
						23.02.06 ПМ 01 МДК 01.01 ЛР 04	
V	1зм.	Лист	№ докум.	Подпись	Дата		1

гента через обратный клапан 14 в конденсаторы с воздушным охлаждением 4 и 5. В конденсаторах хладагент охлаждается потоком наружного воздуха. Наружный воздух засасывается через отверстия воздухоприемников наружного воздуха при помощи осевого вентилятора 30 и через отверстие воздуховытяжного устройства выбрасывается в атмосферу. Охлаждаемые в конденсаторах пары хладагента переходят в жидкое состояние и жидкий хладагент через открытые запорные вентили 15, фильтр-осушитель 12, смотровое стекло 11 с индикатором влажности, открытые соленоидные вентили 10 поступает на вход в терморегулирующие вентили 8 воздухоохладителей. В терморегулирующих вентилях происходит дросселирование хладагента и его давление падает от давления конденсации (нагнетания) до давления кипения (всасывания), после чего хладагент поступает в воздухоохладители. В воздухоохладителях жидкий хладагент кипит в трубках, отводя тепло от их поверхности, а следовательно,, и от охлаждаемого воздуха. Во время охлаждения воздуха часть влаги, находящейся в нем, конденсируется на наружной поверхности трубок и ребер воздухоохладителей. Образующийся при этом конденсат собирается в поддонах воздухоохладителей и сливается через отверстия в нижнем днище установки. Пары хладагента из испарителей поступают на вход в компрессор и цикл работы холодильной машины повторяется. Процесс контролируется манометрами низкого 20 и высокого 21 давления, датчиками низкого и высокого давления 22 и 23, реле высокого и низкого давлений 17 и 18, реле давления конденсации 19 и предохранительным реле давления 16.

При работе в режиме вентиляции холодильная машина и воздухонагреватели выключены и задействован только центробежный вентилятор 29 и приводы заслонок воздушных клапанов 32, которые в этом случае обеспечивают регулируемый воздухообмен в вагоне, но без термодинамической обработки воздуха.

При работе в режиме отопления могут быть задействованы как электрические 34, 35, так и водяные 6, 7 воздухонагреватели. Регулируемый воздухообмен обеспечивается с помощью воздушных клапанов 32, оборудованных заслонками с электроприводом, при этом воздух нагнетается вновь с помощью центробежного вентилятора 29; нагрев воздуха осуществляется в воздухонагревателях 6, 7, 34, 35.

Вывод:

			·	
Изм	Aucm	№ доким	Подпись	Лата

ЗАКЛЮЧЕНИЕ

Автор надеется, что читатель, который, выполняя лабораторные работы, прочитал данное методическое указание и добрался до этой страницы, приобрел необходимые знания и навыки для того, чтобы применять их в будущем в своей профессиональной деятельности.

Многое из того, что есть в литературе по техническому обслуживанию и ремонту подвижного состава, не вошло в данное пособие. Поэтому для успешной работы необходимо постоянно учиться, пополняя свои знания и умения. Все известные методы технического обслуживания и ремонта не могут вместиться в рамках одного пособия или одного учебника. Специалисту, заботящемуся о своем профессиональном росте, следует пополнять свои знания информацией и из других источников — учебников, статей в профессиональных журналах и сборниках научных трудов, материалов научных конференций.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Безопасность жизнедеятельности : в 2 ч. Ч. 2: Безопасность труда на железнодорожном транспорте (электронные ресурсы): учебник под. ред. В.М. Пономарева, В.И. Жукова. М.: Маршрут, 2014 г.
- 2. Быков, В.В. Конструкция, техническое обслуживание и ремонт пассажирских вагонов (текст): учебное иллюстрированное пособие: в 2 ч. Ростов н/Д: Дон печать, 2013 г. 66 с.
- 3. Все Российские железные дороги [Электронный ресурс] Режим доступа: http://wagon.vse-rzd.ru/18-578.html
- 4. Криворудченко, В. Ф. Техническая диагностика вагонов: учебник: в 2-х ч., Ч. 1. Техническая диагностика вагонов: учебник: в 2 ч. Ч. 1. Теоретические основы технической диагностики и неразрушающего контроля деталей вагонов / В. Ф. Криворудченко. Ростов н/Д: ДонПечать, 2013. 315 с.
- 5. Типовой технологический процесс деповского ремонта пассажирских вагонов. ТК-249 ПКБЦВ,2000.
- 6. Типовой технологический процесс пунктов технического обслуживания вагонов. ТК-234ПКБЦВ, 1996.

ПРИЛОЖЕНИЕ 1. ОФОРМЛЕНИЕ ТИТУЛЬНОГО ЛИСТА

РОСЖЕЛДОР

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ростовский государственный университет путей сообщения» (ФГБОУ ВО РГУПС)

Лискинский техникум железнодорожного транспорта имени И.В. Ковалёва (ЛТЖТ – филиал РГУПС)

ОТЧЕТЫ ПО ЛАБОРАТОРНЫМ РАБОТАМ

ПМ.01. Эксплуатация и техническое обслуживание подвижного состава МДК.01.01. Конструкция, техническое обслуживание и ремонт подвижного состава по теме 1.5. Холодильные машины и установки кондиционирования воздуха.

Вып	юлнил:	
студ	ент(ка) группы	
	(фио студента)	
	Проверил:	
	(фио преподавателя)	
«	»201_ г	

приложение 2.

СОДЕРЖАНИЕ

1. ЛР 1. ИССЛЕДОВАНИЕ КОНСТРУКЦИИ КОМПРЕССОРА ХО-	3
ЛОДИЛЬНЫХ МАШИН	3
2. ЛР 2. ИССЛЕДОВАНИЕ РАБОТЫ И РЕГУЛИРОВКА ТЕРМО-	
РЕГУЛИРУЮЩЕГО ВЕНТИЛЯ	5
3. ЛР 3. ПУСК ХОЛОДИЛЬНОЙ МАШИНЫ, ИССЛЕДОВАНИЕ	
РЕЖИМА РАБОТЫ, ОСТАНОВКА.	7
4. ЛР 4. ИССЛЕДОВАНИЕ КОНСТРУКЦИИ УСТАНОВКИ КОН-	
ДИЦИОНИРОВАНИЯ ВОЗДУХА.	10

			I					
					23.02.06 ПМ 01 МДК 01.01 ЛР			
Измн.	Лист	№ докум.	Подпись	Дата				
Разро	аб.					Лит.	Лист	Листов
Прове	<i>₽p</i> .				Холодильные машины и цста-		2	
					новки кондиционирования воз-			
Н. Ко	нтр.				•			л РГУПС В-
Утвер	рд.				духа .			