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1. ОСНОВЫ ЛИНЕЙНОЙ АЛГЕБРЫ 



ЛИНЕЙНАЯ АЛГЕБРА 

   

1.1 Определители второго порядка  

  Определение. Определителем (детерминантом) второго порядка 

называется выражение вида 

12212211

2221

1211
aaaa

aa

aa
 , 

где 22211211 ,,, aaaa  – элементы определителя. Элементы 2211,aa  образуют 

главную диагональ определителя, а элементы 1221,aa – побочную диагональ. 

  Таким образом, определитель второго порядка равен разности между 

произведениями элементов, стоящих на главной и побочной диагоналях. 

  Определитель второго порядка содержит две строки и два столбца. 

  Элементы 1211,aa  стоят в первой строке определителя, а элементы 

2221,aa – во второй строке. 

  Элементы 2111,aa  стоят в первом столбце определителя, а элементы 

2212,aa – во втором столбце. 

  Любой элемент определителя можно записать в виде ika , где индекс i  

указывает номер строки )2,1( i , а индекс k  – номер столбца )2,1( k , на 

пересечении которых стоит рассматриваемый элемент. 

  Обычно элементами определителя являются числа, тогда и сам 

определитель – это число. 

  Пример. 

291514)3(572
75

32



. 

  Но элементами определителя могут быть и другие математические объекты. 

  Пример. 

xxx
xx

xx
2cossincos

cossin

sincos 22  . 

1.2 Определители третьего порядка 



  Определение. Определителем (детерминантом) третьего порядка 

называется выражение вида 

112332331221132231133221312312332211

333231

232221

131211

aaaaaaaaaaaaaaaaaa

aaa

aaa

aaa

 , 

где 333231232221131211 ,,,,,,,, aaaaaaaaa  – элементы определителя. Элементы 

332211 ,, aaa  образуют главную диагональ определителя, а элементы 132231 ,, aaa – 

побочную диагональ. 

  Определитель третьего порядка содержит три строки и три столбца. 

  Элементы 131211 ,, aaa  стоят в первой строке определителя, элементы 

232221 ,, aaa  стоят во второй строке определителя, а элементы 333231 ,, aaa – в 

третьей строке. 

  Элементы 312111 ,, aaa  стоят в первом столбце определителя, элементы 

322212 ,, aaa  стоят во втором столбце определителя, а элементы 33,2313, aaa – в 

третьем столбце. 

  Любой элемент определителя можно записать в виде ika , где индекс i  

указывает номер строки )3,2,1( i , а индекс k  – номер столбца )3,2,1( k , на 

пересечении которых стоит рассматриваемый элемент. 

  Заметим, что определитель третьего порядка выражается в виде суммы, 

каждый член которой есть произведение трех элементов, взятых по одному и 

только по одному из каждой строки и каждого столбца. 

  Рассмотрим два правила составления указанной суммы (простое 

запоминание этого выражения затруднительно). 

1) Правило треугольников. 

  Первые три слагаемых суммы (со знаком «+») представляют собой 

произведения элементов определителя, взятых по три так, как показано на 

нижеприведенной схеме слева (рис. 1.1). Для получения следующих трех 

слагаемых суммы (со знаком «–») нужно взять произведения элементов 



определителя, взятых по три так, как показано на нижеприведенной схеме 

справа (рис. 1.1).   

 

Рис. 1.1 Правило треугольников вычисления определителя третьего порядка 

  Пример. 

  

.11954)3()1(13)2(26                     

)2()3(3641)1(25

136

423

215









 

  2) Правило Саррюса. 

  Напишем квадратную таблицу, соответствующую определителю третьего 

порядка, и припишем к ней справа еще раз первый и второй столбцы (рис. 1.2). 

 

 

 Рис. 1.2 Правило Саррюса вычисления определителя третьего порядка 

  Возьмем со знаком плюс произведение элементов, стоящих на главной 

диагонали определителя, а также произведения элементов, стоящих на двух 

параллелях к ней, содержащих по три элемента (сплошные линии). 

Произведения же элементов, стоящих на побочной диагонали и на двух 

параллелях к ней, содержащих по три элемента, возьмем со знаком минус 
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(пунктирные линии). Алгебраическая сумма этих шести произведений и дает 

определитель третьего порядка.   

  Пример. 







  

3

2

1

      

6

3

5

     

136

423

215

   

11913)1(54)3()2(26)3(3)2(641)1(25  . 

 

1.3 Определители высшего порядка 

  Определение. Определителем (детерминантом) высшего (n-го) 

порядка называется выражение вида 

nnnn

n

n

aaa

aaa

aaa

  ...    

.....................

  ...    

  ...    

21

22221

11211

 , 

где nnnnnn aaaaaaaaa ,...,;...;,...,,;,...,, 2,12222111211  – элементы определителя. 

Элементы nnaaa ,...,, 2211  образуют главную диагональ определителя, а элементы 

nn aa 11,..., – побочную диагональ. 

  Определитель n-го порядка содержит n строк и n столбцов. Обычно 

определитель считают определителем высшего порядка, если 3n . 

  Элементы naaa 11211 ,...,,  стоят в первой строке определителя, элементы 

naaa 22221 ,...,,  стоят во второй строке определителя и т.д., а элементы 

nnnn aaa ,...,, 21 – в последней  n-ой строке. 

  Элементы 12111 ,...,, naaa  стоят в первом столбце определителя, элементы 

22212 ,...,, naaa  стоят во втором столбце определителя и т.д., а элементы 

nnnn aaa ...,, ,21 – в последнем  n-ом столбце. 

  Любой элемент определителя можно записать в виде ika , где индекс i  

указывает номер строки ),...,2,1( ni  , а индекс k  – номер столбца ),...,2,1( nk  , 

на пересечении которых стоит рассматриваемый элемент. 



  Для записи правила вычисления определителя  n-го порядка рассмотрим 

предварительно понятия минора и алгебраического дополнения. 

  Определение. Минором ikM  элемента ika  определителя n-го порядка 

называется определитель (n-1)-го порядка, полученный из исходного 

определителя n-го порядка вычеркиванием i-ой строки и k-го столбца. 

  Примеры 

  1) 

136

423

215





 ;   

;3,2,1

;3,2,1

;3







k

i

n

    
36

15
23


M ;    

.3

;2

;21







k

i

n

 

  2) 
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423

215





 ;   

;3,2,1

;3,2,1

;3







k

i

n

   
13

42
11


M ;   

.1

;1

;21







k

i

n

   

  Определение. Алгебраическим дополнением  ikA  элемента ika  

определителя n-го порядка называется произведение знакового множителя 

ki )1(  на минор ikM  данного элемента определителя: 








 

÷èñëî. íå÷åòíîå   åñëè  ,1

÷èñëî; ÷åòíîå   åñëè  ,1
)1(  ãäå  ,)1(

ki

ki
MA ki

ik
ki

ik  

  Таким образом, знаковый множитель есть просто знак (плюс или минус), 

стоящий перед соответствующим минором: 

   
,   если   четное число;

,   если   нечетное число.

ik

ik

ik

M i k
A

M i k

  
 

  
 

Примеры 

 1) 

136

423

215





 ;  
36

15
2323


 MA ;  

1 2;

2;  3;

2 3 5  нечетное число.

n

i k

i k

 

 

    

 

 2) 

136

423

215





 ; 
13

42
1111


 MA ;       

1 2;

1;  1;

1 1 2  четное число.

n

i k

i k

 

 

    

 

  Легко заметить, что знаковые множители алгебраических дополнений для 

соседних элементов чередуются (с плюса на минус или с минуса на плюс) при 



движении элемента по строке или при движении элемента по столбцу, а для 

элементов, стоящих на главной диагонали, знаковые множители алгебраических 

дополнений всегда положительны. 

  Например, знаковые множители для миноров элементов в определителе 

третьего порядка можно задать таблицей 







. 

  Используя понятие алгебраического дополнения, сформулируем 

универсальное правило вычисления определителя  n-го порядка (разложение по 

элементам строки или столбца), пригодное для вычисления определителя 

любого порядка: 

  Определитель n-го порядка равен сумме попарных произведений 

элементов какой-либо строки (столбца) на их алгебраические дополнения: 

ininiiii AaAaAa  ...2211      – разложение по строке i     ).,...,2,1( ni    

nknkkkkk AaAaAa  ...2211   – разложение по столбцу k  ).,...2,1( nk    

  Примеры 

  1) Вычислить определитель  разложением по второй строке.  

136

423

215





  

  Решение. 

.119841421)21(472)7(3)615(4)125(2)61(3

36

15
4

16

25
2

13

21
3

136

423

215






















 

  2) Вычислить определитель  разложением по третьему столбцу. 

136

423

215





  



Решение.

.1197844271)21(4)21(2)310(1)615(4)129(2

23

15
1

36

15
4

36

23
2

136

423

215
















3) 

Вычислить верхний треугольный определитель четвертого порядка 

44

3433

242322

14131211

000

00

0

a

aa

aaa

aaaa

  , 

т.е. определитель, все элементы которого, стоящие ниже главной диагонали, 

равны нулю. 

  Решение. Применяя последовательно универсальное правило вычисления 

определителя разложением по первому столбцу, получаем 

44332211

44

3433

2211

44

3433

242322

11

44

3433

242322

14131211

0
00

0

000

00

0
aaaa

a

aa
aa

a

aa

aaa

a

a

aa

aaa

aaaa

 . 

  Для вычисления нижнего треугольного определителя четвертого порядка, 

т.е. определителя, все элементы которого, стоящие выше главной диагонали, 

равны нулю, нужно применить последовательно универсальное правило 

вычисления определителя разложением по первой строке: 

44332211

4443

33

2211

444342

3332

22

11

44434241

333231

2221

11

0
0

00

0

00

000

aaaa
aa

a
aa

aaa

aa

a

a

aaaa

aaa

aa

a

 . 

  Очевидно, что для вычисления любого треугольного (как верхнего, так и 

нижнего) определителя  n-го порядка справедлива формула: 



nn

nnnnnn

n

n

aaa

aaa

aa

a

a

aa

aaa

 ...

  ...    

.....................

0  ...    

0  ...    0   

  ...  0      0

.....................

  ...      0

  ...    

2211

21

2221

11

222

11211

, 

т.е. треугольный определитель равен произведению его элементов, стоящих на 

главной диагонали. 

  Пример. 

2640)8()11(103

8000

71100

26155100

4120123











 .  

  

1.4 Основные свойства определителей 

  Свойство 1. Определитель не меняет своего значения при 

транспонировании (замене всех его строк соответствующими столбцами). 

  Пример.  

  .119

142

321

635

136

423

215











  

  Из данного свойства следует, что все свойства определителей, 

относящиеся к строкам определителя, справедливы для его столбцов, и 

наоборот. 

  Свойство 2. При перестановке местами каких-либо двух строк (столбцов) 

определитель меняет знак на противоположный. 

  Примеры  

1) 

215

423

136

136

423

215











  Переставлены местами первая и третья строки. 

2) 

316

243

125

136

423

215











  Переставлены местами второй и третий столбцы. 



  Следствие. Определитель с двумя одинаковыми строками (столбцами) 

равен нулю. 

  Примеры  

1) .0

215

423

215







     Одинаковые первая и третья строки. 

2) .0

336

223

115





   Одинаковые второй и третий столбцы. 

  Свойство 3. Общий множитель элементов строки (столбца) можно 

выносить за знак определителя. 

  Примеры  

1) 

136

423

215

2

2612

423

215











          
ля.определите знак за 2 множитель

 общий вынесен  строки  третьейИз
 

2) 

136

423

215

)5(

536

2023

1015









      
ля.определите знак за (-5) множитель

 общий вынесен  столбца   третьегоИз
 

  Следствие 1. Если все элементы какой-либо строки (столбца) равны 

нулю, то определитель равен нулю. 

  Примеры  

1) .0

000

423

215





     Все элементы третьей строки равны нулю. 

2) .0

306

203

105





     Все элементы второго столбца равны нулю. 

    Следствие 2. Если элементы какой-либо строки (столбца) пропорциональны 

соответствующим элементам другой строки (столбца), то определитель равен 

нулю. 



  Примеры  

1) .0

215

423

215







     

.1
2

2

1

1

5

5

:строки  третьейэлементам ующимсоответств

 альныпропорцион  строки первой  Элементы










 

 

2) .0

963

632

351





       

.3
3

9

2

6

1

3

:столбца первого элементам ующимсоответств

 альныпропорцион  столбца    третьегоЭлементы







 

  Свойство 4. Если элементы какой-либо строки (столбца) определителя 

представляют собой суммы двух слагаемых, то определитель равен сумме двух 

определителей, причем в одном определителе соответствующая строка 

(столбец) состоит из первых слагаемых, а в другом – из вторых слагаемых. 

  Примеры  

1) 

333

222

111

333

222

111

333

222

111111

cba

cba

cba

cba

cba

cba

cba

cba 





. 

  Элементы первой строки определителя представляют собой суммы двух 

слагаемых.        

2) 

333

222

111

333

222

111

3333

2222

1111

ca

ca

ca

cba

cba

cba

cba

cba

cba





















. 

  Элементы второго столбца определителя представляют собой суммы двух 

слагаемых.        

  Свойство 5. Определитель не меняет своего значения от прибавления ко 

всем элементам какой-либо строки (столбца) соответствующих элементов 

другой строки (столбца), умноженных на одно и то же число. 

  Примеры  

1) 

333

222

212121

333

222

111

cba

cba

kcckbbkaa

cba

cba

cba 

 . 



  Ко всем элементам первой строки прибавлены соответствующие 

элементы второй строки, умноженные на одно и то же число k.  

  Можно сказать и так: первая строка полученного определителя есть 

линейная комбинация первой и второй строки с коэффициентом k исходного 

определителя. 

2) 

3333

2222

1111

333

222

111

ckcba

ckcba

ckcba

cba

cba

cba







 . 

  Ко всем элементам второго столбца прибавлены соответствующие 

элементы третьего столбца, умноженные на одно и то же число k. 

  Можно сказать и так: второй столбец полученного определителя есть 

линейная комбинация второго и третьего столбца с коэффициентом k 

исходного определителя. 

  Применение свойства 5 на практике позволяет ускорить и упростить 

вычисление определителей.  

  Пример.  

  Вычислить определитель 

1045

823

312

 . 

  Решение. Вычитая из элементов второй строки элементы первой строки, 

умноженные на 2, а из элементов третьей строки элементы первой строки, 

умноженные на 4, получаем 

203

201

312



 . 

 Разложив этот определитель по второму столбцу, содержащему лишь один 

неравный нулю элемент, получим 

8
23

21
)1( 




 . 

 



1.5 Матрицы 

  Определение. Матрицей размерности nm  называется 

прямоугольная таблица элементов, состоящая из m строк и  n столбцов. 

  Матрицы обычно обозначаются прописными латинскими буквами, а ее 

элементы – соответствующими строчными буквами.  

  Размерность матрицы часто указывают под ее обозначением. 

  Матрицу можно записать в одном из следующих видов: 
























mnmm

n

n

nm

aaa

aaa

aaa

A

 ...  

...................

  ...  

  ...  

21

22221

11211

  
; 






















mnmm

n

n

nm

aaa

aaa

aaa

A

 ...  

...................

  ...  

  ...  

21

22221

11211

  
; 

mnmm

n

n

nm

aaa

aaa

aaa

A

 ...   

.................... 

  ...   

  ...   

21

22221

11211

  



. 

  Любой элемент матрицы можно записать в виде ika , где индекс i  

указывает номер строки ),...,2,1( mi  , а индекс k  – номер столбца ),...,2,1( nk  , 

на пересечении которых стоит рассматриваемый элемент. 

  Матрицу можно записать и в более короткой форме: 

      nkmiaAaAaA ikikik ,...,2,1  ;,...,2,1   ,   ,   ,  . 

  Определение. Квадратной матрицей порядка n называется матрица, 

состоящая из n строк и  n столбцов. 

  В квадратной матрице порядка n (как и в определителе) можно 

определить главную и побочную диагонали: элементы nnaaa ,...,, 2211  образуют 

главную диагональ матрицы, а элементы nn aa 11,..., – побочную диагональ. 

  Пример.  
























945

823

312

3  3
A   – квадратная матрица третьего порядка (n=3). 

 Побочная диагональ    Главная диагональ 

  Квадратной матрице A порядка n всегда можно поставить в соответствие 

определитель того же порядка, который обозначают A  или Adet  (детерминант 

матрицы A). 



  Пример.  























765

824

319

A   – квадратная матрица третьего порядка (n=3). 

765

824

319

det 



 AA  – определитель третьего порядка (n=3) матрицы A. 

  Отметим, что квадратная матрица есть только таблица, и смешивать ее с 

определителем нельзя. 

  Определение. Квадратная матрица A называется неособенной 

(невырожденной), если ее определитель отличен от нуля: 0A . 

   Если же определитель квадратной матрицы равен нулю, то матрица 

называется особенной (вырожденной). 

  Определение. Матрицей-строкой или строкой называется матрица 

размерности  n1 , состоящая из одной строки. 

  Пример.  

 11802
4  1



A   – матрица-строка (n=4). 

  Определение. Матрицей-столбцом или столбцом называется матрица 

размерности 1m , состоящая из одного столбца. 

  Пример.  




















7

5

3

1  3
A   –матрица-столбец (m=3). 

  Определение. Верхней треугольной матрицей называется квадратная 

матрица, все элементы которой, стоящие ниже главной диагонали, равны нулю. 

  Пример.  























44

3433

242322

14131211

000

00

0

a

aa

aaa

aaaa

A  – верхняя треугольная матрица четвертого порядка. 



  Определение. Нижней треугольной матрицей называется квадратная 

матрица, все элементы которой, стоящие выше главной диагонали, равны нулю. 

  Пример.  























44434241

333231

2221

11

0

00

000

aaaa

aaa

aa

a

A – нижняя треугольная матрица четвертого порядка. 

  Определение. Диагональной матрицей называется квадратная 

матрица, все элементы которой, стоящие как ниже, так и выше главной 

диагонали, равны нулю. 

  Пример.  























44

33

22

11

000

000

000

000

a

a

a

a

A – диагональная матрица четвертого порядка. 

  Определение. Единичной матрицей называется диагональная 

матрица, все элементы которой, стоящие на главной диагонали, равны единице. 

  Единичные матрицы обозначаются обычно буквой E. 

  Пример.  























1000

0100

0010

0001

4EE – единичная матрица четвертого порядка. 

  Очевидно, что для единичной матрицы E определитель 1E  

(произведению элементов, стоящих на главной диагонали) и, следовательно, 

единичная матрица является неособенной матрицей. 

  Определение. Нулевой матрицей или нуль-матрицей называется 

матрица, все элементы которой равны нулю. 

  Определение. Матрицы называются равными, если они одной размерности 

и все их соответствующие (стоящие на одинаковых местах) элементы равны.  



1.6 Действия над матрицами 

  1. Сложение матриц. 

  Складывать можно только матрицы одинаковой размерности. 

  Пусть даны матрицы       nkmicCbBaA ikikik ,...,2,1 ;,...,2,1  ;  , ,  . 

  Определение. Суммой матриц A и B  называется матрица C=A+B, 

элементы которой равны сумме соответствующих элементов матриц  A и B:  

ikikik bac  . 

  2. Произведение матрицы на число.  

  Пусть даны матрицы     nkmicCaA ikik ,...,2,1 ;,...,2,1  ;  ,   и число  . 

  Определение. Произведением (умножением) матрицы A  на число   

называется матрица AC  , элементы которой равны произведению числа   

на соответствующие элементы матрицы  A :  

ikik ac  . 

  Пример. 

  Пусть 


























 1148

0953  
   ;

10605  

7342

4  24  2
BA .  

Найти матрицу BAC 32  . 

  Решение. На основании определений произведения матрицы на число и 

суммы матриц имеем   




























 1148

0953  
3

10605  

7342
2

4  2
C  

 







































23151234

14  33713  

33  1224

02715  9  

2012010

14 684 
. 

  Сложение матриц и произведение матрицы на число обладают 

следующими свойствами. 

  Если  A,B,C – матрицы одинаковой размерности, а   и   - произвольные 

числа, то справедливы равенства: 

  1. ABBA  . 

  2. )()( CBACBA  . 



  3. BABA   )( . 

  4. AAA   )( . 

  5. AA )()(   . 

  Сложение матриц и произведение (умножение) матрицы на число 

называются линейными операциями над матрицами. 

  3. Умножение матриц. 

  Определение. Произведением матрицы-строки A размерности n1    на 

матрицу-столбец B размерностью 1n  называется число, равное сумме попарных 

произведений соответствующих элементов матрицы A на элементы матрицы B:  
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  Пример. 

  Пусть   
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  Тогда    45210306)3()7(10653)2( AB . 

  Еще раз подчеркнем, что матрица-строка A и матрица-столбец B должны 

иметь одинаковое количество элементов. 

  Теперь можно сформулировать правила умножения матрицы A на 

матрицу B. 

  Правило 1. Число столбцов матрицы A должно равняться числу строк 

матрицы B: 
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  Правило 2. В результате умножения матрицы A на матрицу B получается 

матрица C, число строк которой равно числу строк матрицы A, а число 

столбцов которой равно числу столбцов матрицы  B: 
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  Правило 3. Элемент ikc  матрицы  C равен произведению i-ой строки 

матрицы  A на  k-ый столбец матрицы B: 

  nkmibababac pkipkikiik ,...,2,1   ;,...,2,1   ;...2211  . 

  Пример. 

  Найти произведение матриц 
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  Решение. Правило 1 выполняется, так как число столбцов матрицы A 

равняется числу строк матрицы B и равняется трем (p=3). 

  Согласно правилу 2 в результате умножения матрицы A на матрицу B 

получается матрица C, число строк которой равно числу строк матрицы  A 

(m=2), а число столбцов которой равно числу столбцов матрицы  B (n=4): 
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  По правилу 3 найдем элементы ikc  (i=1,2; k=1,2,3,4) матрицы C, 

используя определение произведения матрицы-строки на матрицу-столбец: 
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  Таким образом 
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  Умножение матриц обладает следующими свойствами: 

  1. Для любых трех матриц  A, B,  C, если существуют произведения AB и    

(AB)C, то существуют произведения BC и  A(BC) и справедливо равенство 

)()( BCACAB  . 

  2. ACABCBA  )( . 

  3. BCACCBA  )( . 

  4. BAAB . 



  5. Если A – квадратная матрица, а E – единичная матрица того же 

порядка, то 

AEAAE  . 

  Примем без доказательства, что если  A и B – квадратные матрицы одного 

порядка, то определитель произведения матриц равен произведению их 

определителей: 

BAAB  . 

  Отсюда следует, что произведение двух квадратных матриц одного и 

того же порядка будет неособенной матрицей тогда и только тогда, когда 

обе перемножаемые матрицы неособенные. 

 

1.7 Обратная матрица 

  Определение.  Матрица 1A  называется обратной для квадратной 

матрицы A, если  

EAAAA   11 , 

где  E – единичная матрица. 

  Из определения обратной матрицы 1A  вытекает, что в случае 

существования она должна быть квадратной матрицей того же порядка, что и 

исходная матрица A, которая при этом должна быть неособенной ( 0A ), так 

как E – неособенная матрица ( 01E ) и  01111   EAAAAAA . 

  Для нахождения обратной матрицы используют формулу 
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где A , а матрица 
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называется присоединенной к матрице A и составлена из алгебраических 

дополнений ikA элементов ika  определителя A  матрицы  A. 

  Иными словами, если в исходной квадратной матрице  
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заменить каждый ее элемент его алгебраическим дополнением и 

протранспонировать (заменить строки столбцами), а затем еще поделить 

каждый полученный элемент на величину определителя матрицы  A, то 

получим обратную матрицу  
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  Пример. 

  Найти обратную матрицу для матрицы 
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  Решение. Прежде всего вычислим определитель матрицы A: 

2 4 3

1 2 4 2 ( 2) 5 ( 4) 4 3 1 ( 1) 3 3 ( 2) 3 1 ( 4) 5 ( 1) 4 2

3 1 5

   20 48 3 18 20 8 25.
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

        
  

  Так как 025 , то для исходной матрицы A существует обратная 

матрица 1A . Найдем ее по формуле с использованием присоединенной 



матрицы. Для этого вычислим сначала все алгебраические дополнения 

элементов исходной матрицы A: 
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  Составим из найденных алгебраических дополнений присоединенную 

матрицу к A, заменив каждый ее элемент его алгебраическим дополнением и 

протранспонировав (заменив строки столбцами): 
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  Теперь найдем обратную матрицу по формуле с использованием 

присоединенной матрицы: 
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  Проверим полученный результат, используя определение обратной 

матрицы: 
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  Таким образом, EAA 1  (легко самостоятельно убедиться, что и  

EAA 1 ), следовательно, обратная матрица найдена верно.  

 

1.8 Ранг матрицы 

  Определение. Выделим в матрице  
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s строк и s столбцов, где s – число, меньшее или равное наименьшему из чисел 

m и n. Минором порядка s матрицы 
nm

A
  

  называется определитель порядка s, 

составленный из элементов, стоящих на пересечении выделенных строк и 

столбцов. 

  Сами элементы матрицы 
nm

A
  

 считаются минорами первого порядка. 

  Пример. 

  Пусть дана матрица  
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  Рассмотрим  миноры первого порядка. 

  Данная матрица содержит 1243  nm  элементов, которые и 

являются минорами (определителями) первого порядка. 



  Рассмотрим миноры второго порядка. 

  1) Выделим в матрице 
4  3

A  строку 1 и строку 2. 

  а) Последовательно выделяя далее столбцы 1 и 2, 1 и 3, 1 и 4, получим 

соответственно три определителя второго порядка, составленных из элементов, 

стоящих на пересечении выделенных строк и столбцов: 

57

41
    ;

67

21
    ;

07

21 




 . 

  б) Последовательно выделяя далее столбцы 2 и 3, 2 и 4, получим 

соответственно два определителя второго порядка, составленных из элементов, 

стоящих на пересечении выделенных строк и столбцов:  

50

42
    ;

60

22
   




 . 

  в) Выделяя далее столбцы 3 и 4, получим определитель второго порядка, 

составленный из элементов, стоящих на пересечении выделенных строк и 

столбцов: 

56

42
      




 .  

  Все эти определители и есть миноры второго порядка, соответствующие 

выделенным строкам 1 и 2 и выделенным столбцам. 

  2) Выделим в матрице 
4  3

A  строку 1 и строку 3. 

  а) Последовательно выделяя далее столбцы 1 и 2, 1 и 3, 1 и 4, получим 

соответственно три определителя второго порядка, составленных из элементов, 

стоящих на пересечении выделенных строк и столбцов: 

110
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    ;
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    ;
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21 




 .  

  б) Последовательно выделяя далее столбцы 2 и 3, 2 и 4, получим 

соответственно два определителя второго порядка, составленных из элементов, 

стоящих на пересечении выделенных строк и столбцов:  
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  в) Выделяя далее столбцы 3 и 4, получим определитель второго порядка, 

составленный из элементов, стоящих на пересечении выделенных строк и 

столбцов: 

13

42
      




 .  

  Все эти определители и есть миноры второго порядка, соответствующие 

выделенным строкам 1 и 3 и выделенным столбцам. 

   3) Выделим в матрице 
4  3

A  строку 2 и строку 3. 

  а) Последовательно выделяя далее столбцы 1 и 2, 1 и 3, 1 и 4, получим 

соответственно три определителя второго порядка, составленных из элементов, 

стоящих на пересечении выделенных строк и столбцов: 

110

57
    ;

310

67
    ;
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07




 .  

  б) Последовательно выделяя далее столбцы 2 и 3, 2 и 4, получим 

соответственно два определителя второго порядка, составленных из элементов, 

стоящих на пересечении выделенных строк и столбцов:  
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
 .  

  в) Выделяя далее столбцы 3 и 4, получим определитель второго порядка, 

составленный из элементов, стоящих на пересечении выделенных строк и 

столбцов: 

13

56
      




 .  

  Все эти определители и есть миноры второго порядка, соответствующие 

выделенным строкам 2 и 3 и выделенным столбцам. 

  Таким образом, для рассматриваемой матрицы 
4  3

A  можно получить всего  

1863   миноров второго порядка. 



  Рассмотрим миноры третьего порядка. 

  4) Выделим в матрице 
4  3

A  все три строки: строку 1, строку 2 и строку 3. 

  Последовательно выделяя далее столбцы 1,2,3; 1,2,4; 1,3,4 и 2,3,4, 

получим соответственно четыре определителя третьего порядка, составленных 

из элементов, стоящих на пересечении выделенных строк и столбцов: 
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  Все эти определители и есть миноры третьего порядка, соответствующие 

выделенным строкам 1,2,3 и выделенным столбцам. 

  Таким образом, для рассматриваемой матрицы 
4  3

A  можно получить всего 

4 минора третьего порядка. 

  Итого, для матрицы 
4  3

A  можно получить всего 12+18+4=34 минора 

различных (первого, второго и третьего) порядков. 

  Определение. Рангом матрицы называется наибольший порядок 

минора матрицы, отличного от нуля. 

  Ранг матрицы A обозначается через )(Ar  или просто через r, если ясно, о 

какой матрице идет речь. 

  Из определения ранга матрицы 
nm

A
  

 следует, что nrmr   , , где m – 

число строк, а n – число столбцов матрицы.    

  Если ранг матрицы равен r, то существует минор порядка r, не равный 

нулю, а все миноры более высокого порядка, если они существуют, равны 

нулю. 

  Определение. Отличный от нуля минор матрицы, порядок которого 

равен рангу матрицы, называется базисным минором этой матрицы. Столбцы и 

строки матрицы, участвующие в образовании базисного минора, также 

называются базисными. 



  Заметим, что в общем случае у матрицы может быть несколько базисных 

миноров. 

  Ранг нулевой матрицы можно считать равным нулю.  

  Вычисление ранга матрицы путем вычисления всех ее миноров 

различных порядков требует большой вычислительной работы. Однако для 

некоторых матриц частного вида ранг можно вычислить легко.  

  Пример. 

  Матрица  
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если 0 ,0 ,0 332211  aaa , имеет ранг 3.  

  Действительно, ее минор третьего порядка  
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и является базисным, а все миноры порядка 4 равны нулю, так как содержат 

четвертую строку, состоящую только из нулей. 

 Приведенный пример обобщается на матрицы произвольной размерности.  

Если ни одно из чисел rraaa ,...,, 2211  не равно нулю, то ранг матрицы 
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равен r. Такую матрицу часто называют ступенчатой или трапециевидной. 

Очевидно, что минор 
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порядка r будет базисным. 

  На практике для вычисления ранга матрицы ее приводят к 

трапециевидной с помощью так называемых элементарных преобразований. 

 

1.9 Элементарные преобразования матриц 

  Определение. Элементарными преобразованиями матрицы 

называются следующие преобразования: 

1) умножение строки (столбца) на число, отличное от нуля;  

2) замена строки (столбца) суммой этой строки (столбца) с другой 

строкой (столбцом); 

3) перестановка строк (столбцов). 

  Из свойств определителей следует, что элементарные преобразования 

матрицы не изменяют ее ранга. 

  Определение. Матрицы, полученные одна из другой элементарными 

преобразованиями, называются эквивалентными и связываются знаком ~. 

  Очевидно, что эквивалентные матрицы имеют одинаковые ранги. 

  Ранг матрицы можно найти, с помощью элементарных преобразований, 

преобразовав ее к трапециевидной, для которой ранг вычисляется легко.  

  Пример. 

  Определить ранг матрицы  
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  Решение. 

  1) Переставим первую строку с четвертой: 
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  2) Вторую строку заменим суммой с первой, умноженной на -8. 

  Третью строку заменим суммой с первой, умноженной на -7. 

  Четвертую строку заменим суммой с первой, умноженной на -3. 

  Получим: 
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  3) Переставим вторую строку с четвертой: 
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  4) Третью строку заменим суммой со второй, умноженной на -2. 

  Четвертую строку заменим суммой со второй, умноженной на -3. 

  Получим трапецевидную матрицу: 
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  В данном примере матрица имеет две ненулевые строки, и минор второго 

порядка  

06
60

31



. 

  Следовательно, ранг исходной матрицы 
5   4 

A  равен двум. 

  В общем случае, очевидно, ранг ступенчатой матрицы равен числу 

ненулевых строк. 



1.10 Системы линейных алгебраических уравнений 

  Определение. Системой линейных алгебраических уравнений 

называется система m уравнений с n неизвестными  (переменными) nxxx ,...,, 21 : 
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  Числа ),...,2,1 ;,...,2,1( nkmiaik  называются коэффициентами при 

неизвестных или коэффициентами системы, а числа ),...,2,1( mibi   – 

свободными членами.  

  Если число уравнений системы равно числу неизвестных )( nm  , то 

будем называть систему уравнений квадратной системой, в противном случае 

)( nm   – системой общего вида.  

  Если все свободные члены mbbb ,...,, 21  равны нулю: 
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то система линейных уравнений называется однородной, в противном случае – 

неоднородной. 

  Определение. Решением системы линейных уравнений называется 

упорядоченная совокупность n чисел 00
2

0
1 ,...,, nxxx , которые, будучи подставлены 

в систему уравнений вместо nxxx ,...,, 21  соответственно, обращают все 

уравнения системы в тождества. 

  Определение. Система линейных уравнений называется совместной, 

если она имеет хотя бы одно решение; если система не имеет решений, то она 

называется несовместной. 

  Совместная система уравнений называется определенной, если она имеет 

одно решение, и неопределенной, если она имеет более одного решения. 



  Определение. Системы линейных уравнений называются эквивалентными, 

если они имеют одно и то же множество решений.  

  К эквивалентной системе уравнений приводят, очевидно, следующие 

преобразования исходной системы: 

  1) вычеркивание уравнения  00...00 21  nxxx , которое будем 

называть нулевой строкой; 

  2) перестановка уравнений или слагаемых kik xa  в уравнениях; 

  3) прибавление к обеим частям одного уравнения соответственно обеих 

частей другого уравнения этой системы, умноженного на любое число; 

  4) удаление уравнения, являющегося линейной комбинацией других 

уравнений системы (из такого уравнения можно сформировать нулевую 

строку). 

  Введем в рассмотрение следующие матрицы: 

1) матрицу системы  
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состоящую из коэффициентов при неизвестных системы; 

2) матрицу-столбец (столбец) неизвестных 
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3) матрицу-столбец (столбец) свободных членов 
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  Тогда систему линейных уравнений можно записать в матричной форме: 
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1   1      


mnnm
BXA , или  просто  BAX  . 

 Введем в рассмотрение еще одну матрицу. Дополним матрицу системы  A 

столбцом свободных членов B и получим новую матрицу размером )1(  nm , 

которую назовем расширенной матрицей системы: 
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 Очевидно, что система линейных уравнений может быть представлена 

расширенной матрицей системы.  

 Ясно также, что ранг )()( ArAr B  , так как каждый минор матрицы  A 

будет минором и матрицы  B, но не наоборот. 

  Пример. 

  Пусть дана система линейных уравнений общего вида 
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из трех уравнений )3( m  с четырьмя неизвестными 4321 ,,, xxxx  )4( n . 

Тогда 
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 В матричной форме система уравнений имеет вид 
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 Легко убедиться, что рассматриваемая система совместна, так как 

значения  

0  ;0  ;2/1  ;2/5 4321  xxxx  

обращают все три уравнения системы в тождества. 

 

1.11 Решение систем линейных уравнений по формулам Крамера 

 Рассмотрим частный случай системы линейных уравнений, когда число 

уравнений равно числу неизвестных ( nm  ), т.е. квадратную систему 

уравнений  
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 Составим квадратную матрицу A порядка n этой системы: 













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




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. 

 Составим определитель порядка n квадратной матрицы A этой системы:  

nnnn

n

n

aaa

aaa

aaa

A

 ...  

....................

  ...  

  ...  

21

22221

11211

 , 

который называется также определителем системы. Заменим в этом 

определителе  k-ый столбец на столбец свободных членов B, т.е. получим в 

результате другой определитель, который обозначим k : 



nnnnn

n

n

k

abaa

abaa

abaa

k

 ...  ...  

..........................

 ...  ...  

 ...  ...  

    )(                      

21

222221

111211


,    nk ,...,2,1 . 

 Тогда если 0 , квадратная система линейных уравнений имеет 

единственное решение, определяемое по формулам Крамера 

nkx k
k ,...,2,1   , 




 . 

  Пример. 

  Найти решение системы линейных уравнений  















.643  

,1     2

,5 3 2 

321

321

321

xxx

xxx

xxx

 

 Решение. Составим и вычислим определитель системы 

0231631824

431

112

321

 . 

 Так как определитель системы отличен от нуля, то система имеет 

единственное решение. Найдем это решение по формулам Крамера: 

21581891220

436

111

325

1  ; 

264033654

461

112

351

2  ; 

432453026

631

112

521

3  ; 

2
2

4
  ;1

2

2
  ;1

2

2 3
3

2
2

1
1 

















 xxx .  



1.12 Решение систем линейных уравнений матричным методом  

(с помощью обратной матрицы) 

 Рассмотрим опять частный случай системы линейных уравнений, когда 

число уравнений равно числу неизвестных ( nm  ), т.е. квадратную систему 

уравнений  














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. 

В матричной форме данная система имеет вид BAX  , где 























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n
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  ...  

  ...  
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

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



















n

n

x

x

x

X

2

1
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;   
























n

n

b

b

b

B

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1

1   
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 Составим квадратную матрицу A порядка n этой системы: 























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n
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 Если определитель матрицы A (определитель системы)  

nnnn

n

n

aaa

aaa

aaa

A

 ...  

....................

  ...  

  ...  

21

22221

11211

  

отличен от нуля, то матрица A является невырожденной и для нее существует 

обратная матрица 1A . 

 Умножая обе части матричного уравнения BAX   слева на матрицу 1A ,  

получим 

BAAXA 11 )(   . 

 Используя свойства умножения матриц, имеем 



XEXXAAAXA   )()( 11 . 

 Следовательно, 

BAX 1 . 

Данное равенство есть матричная запись решения исходной квадратной 

системы линейных уравнений. 

  Пример. 

  Найти решение системы линейных уравнений  















.643  

,1     2

,5 3 2 

321

321

321

xxx

xxx

xxx

 

 Решение. Матрица системы имеет вид 



















431

112

321

A . 

 Определитель матрицы  A 

0231631824

431

112

321

 A . 

  Так как определитель матрицы  A отличен от нуля, то для матрицы  A 

существует обратная матрица 1A .  

  Для нахождения обратной матрицы используем формулу 

*1 1
AA 


 ,   

где 2 A , а матрица 



















332313

322212

312111

*

AAA

AAA

AAA

A  

является присоединенной к матрице A и составляется из алгебраических 

дополнений ikA элементов ika  определителя A  матрицы  A. 



  Для этого вычислим сначала все алгебраические дополнения элементов 

исходной матрицы  A: 

;134
43

11
11 


A   ;1)98(

43

32
21 A   

;9)18(
41
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12 


A   ;134

41

31
22 A  

;716
31

12
13 


A   ;1)23(

31

21
23 A  

 

;132
11

32
31 


A    ;7)61(

12

31
32 


A  

.541
12

21
33 


A  

  Составим из найденных алгебраических дополнений присоединенную 

матрицу к A, заменив каждый ее элемент его алгебраическим дополнением и 

протранспонировав (заменив строки столбцами): 











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
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
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*
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A . 

  Теперь найдем обратную матрицу по формуле с использованием 

присоединенной матрицы: 


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11 *1 AA . 

  В матричной форме решение исходной системы уравнений имеет вид  
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1
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111

2

11BAX , 

т.е. 2  ;1  ;1 321  xxx , что, естественно, совпадает с найденным выше 

решением этой же системы по формулам Крамера. 



1.13 Решение систем линейных уравнений общего вида методом Гаусса 

 Рассмотрим теперь систему линейных уравнений общего вида 
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где число неизвестных n не предполагается обязательно равным числу 

уравнений m. 

  Ранее для системы уравнений общего вида были введены понятия 

матрицы системы 


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и расширенной матрицы системы  
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причем для рангов этих матриц выполняется очевидное соотношение 

)()( ArAr B  .  

 Критерий совместности (наличия хотя бы одного решения) системы 

линейных уравнений общего вида дается теоремой Кронекера-Капелли: 

 Система линейных уравнений совместна тогда и только тогда, когда 

ранг матрицы системы равен рангу расширенной матрицы системы: 

)()( BArAr  .  

 Рассмотрим метод Гаусса решения системы линейных уравнений общего 

вида, который является универсальным методом решения систем и позволяет 

на первом этапе (прямой ход) определить совместность системы, а на втором 

этапе (обратный ход) , если система совместна, найти ее решения.  



На первом этапе метода Гаусса расширенная матрица системы с 

помощью элементарных преобразований приводится к трапециевидной форме.  

При этом следует обращать внимание на два момента: 

1) Если в процессе элементарных преобразований в расширенной 

матрице появляются нулевые строки, то их можно отбросить, так как они 

являются линейными комбинациями других строк. Иными словами, 

соответствующее каждой нулевой строке уравнение системы является 

линейной комбинацией других уравнений системы и не оказывает никакого 

влияние на решение системы. Это видно из того, что нулевая строка 

расширенной матрицы соответствует уравнению вида 

00...00 21  nxxx , 

решениями которого являются любые упорядоченные наборы n 

действительных чисел. 

 2) Если в процессе элементарных преобразований в матрице системы 

появляется нулевая строка, а расположенный в этой же строке расширенной 

матрицы свободный член отличен от нуля, то система линейных уравнений 

несовместна. Назовем такую строку «плохой». «Плохой» строке расширенной 

матрицы соответствует уравнение вида 

0   ;0...00 21  bbxxx n ,  

которое, очевидно, не имеет решений, так как ни для каких действительных 

значений неизвестных nxxx ,...,, 21  это уравнение не может обратиться в 

тождество. Следовательно, система уравнений несовместна. 

  Пример. 

  Найти методом Гаусса решение системы линейных уравнений  


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Решение. Рассмотрим прямой ход метода Гаусса. 

 Расширенная матрица системы имеет вид 




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





























3

2

2

7

   

1

6

3

3

   

4

5

1

2

   

1

5

4

3

   

2

1

2

1

   

3
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1

BA .   

Приведем ее с помощью элементарных преобразований к трапециевидной 

форме. 

 На первом шаге в качестве разрешающей (ведущей) строки выбираем 

первую строку, а в качестве разрешающего элемента выбираем диагональный 

элемент этой строки, так как он отличен от нуля: 0111 a . Переписываем 

разрешающую первую строку без изменения.  

«Обнуляем» первый столбец, для чего: 

–  вместо второй строки записываем ее сумму с разрешающей первой 

строкой, умноженной на (-2): )2(1.2.2.  СтрСтрСтр ; 

–  вместо третьей строки записываем ее сумму с разрешающей первой 

строкой, умноженной на (-1): )1(1.3.3.  СтрСтрСтр ; 

–  вместо четвертой строки записываем ее сумму с разрешающей первой 

строкой, умноженной на 3: 31.4.4.  СтрСтрСтр . 

Получаем эквивалентную матрицу 
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~BA . 

 Упростим ее с целью дальнейших преобразований, для чего поменяем 

местами вторую и четвертую строки: 4.2. СтрСтр  ; 

Получаем эквивалентную матрицу 


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На втором шаге в качестве разрешающей (ведущей) строки выбираем 

вторую строку, а в качестве разрешающего элемента выбираем диагональный 

элемент этой строки, так как он отличен от нуля: 0522 a . Переписываем 

разрешающую вторую строку без изменения. Бывшей уже разрешающей 

первую строку также переписываем без изменения. 

Однако в данном случае «обнулять» второй столбец не нужно, так как в 

нем ниже разрешающего элемента 0522 a  уже стоят нули. Поэтому и 

остальные строки матрицы – третью и четвертую – переписываем без 

изменения. Таким образом, матрица не изменилась. 

На третьем шаге в качестве разрешающей (ведущей) строки выбираем 

третью строку, а в качестве разрешающего элемента выбираем диагональный 

элемент этой строки, так как он отличен от нуля: 0233 a . Переписываем 

разрешающую третью строку без изменения. Бывшими уже разрешающими 

первую и вторую строки также переписываем без изменения. 

«Обнуляем» третий столбец, для чего вместо четвертой строки 

записываем ее сумму с разрешающей третьей строкой: 3.4.4. СтрСтрСтр  . 

Получаем эквивалентную матрицу 
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~BA , 

ранг которой равен четырем (количеству ненулевых строк). 

Тогда матрица, эквивалентная матрице системы, имеет вид 



























0

3

8

3

   

0

3

2

2

   

0 

2 

8

3 

    

0

0

5

1

      

0

0

0

1

~A , 

но ее ранг равен трем (количеству ненулевых строк). 

 Таким образом, на первом этапе метода Гаусса (прямой ход) установлено, 

что ранг матрицы системы не равен рангу расширенной матрицы системы  



)()(  ;4)(  ;3)( BB ArArArAr  . 

Следовательно, система несовместна и не имеет решений. 

Об этом же, собственно, говорит и наличие «плохой» – четвертой –  

строки в матрице, эквивалентной расширенной матрице системы BA . 

 На втором этапе (если система уравнений совместна) метода Гаусса 

после удаления нулевых строк расширенная матрица (эквивалентная исходной 

после элементарных преобразований), ранг которой равен r, имеет вид 



































0      0    ...       0        0    ...     0       0 

.........................................................

0      0    ...       0        0    ...     0       0 

     ...         ...     0       0 

                                         

   

   

 ...  

 ... 

...   0

 ...   

1 ,

22

11

1 ,22

1 ,11

22

1211

rrnrrrr

n

n

rr

rr

















,   ),...,2,1 ;0( rjjj  . 

 Эта расширенная матрица соответствует системе уравнений 























.  ...                                     

.........................................................................

,       ...                                

,       ...                   

,       ...       

33333

22323222

11313212111

rnrnrrr

nn

nn

nn

xx

xx

xxx

xxxx









 

 Рассмотрим два случая. 

1) Ранг расширенной матрицы равен числу неизвестных  (r=n). 

Система уравнений имеет вид 























.                                                         

.........................................................................

,       ...                                

,       ...                   

,       ...       

33333

22323222

11313212111

rrrr

nn

nn

nn

x

xx

xxx

xxxx









 

 В этом случае система имеет единственное решение. Система – 

совместная и определенная. 



 Поднимаясь снизу вверх (обратный ход метода Гаусса), последовательно 

находим: 

–  из последнего r-го уравнения неизвестное rrrrx  ; 

–  из )1( r -го уравнения неизвестное 1rx  путем подстановки в это 

уравнение уже найденного неизвестного rx ; 

–  из i-го уравнения неизвестное ix  при подстановке в него уже 

найденных величин 11,...,,  irr xxx ; 

–  и так далее до первого уравнения, из которого при подстановке в него 

уже найденных величин 21,...,, xxx rr   находим 1x . 

  Пример. 

  Найти методом Гаусса решение системы линейных уравнений  





















.0343

,2   3  

,0        

,2 3 2 

321

321

321

321

xxx

xxx

xxx

xxx

 

Решение. 

1) Прямой ход метода Гаусса. 

 Расширенная матрица системы имеет вид 


























0   3   4 3

213  1

0   1  11

2   3  2  1

BA .  

Приведем ее с помощью элементарных преобразований к трапециевидной 

форме. 

 На первом шаге в качестве разрешающей (ведущей) строки выбираем 

первую строку, а в качестве разрешающего элемента выбираем диагональный 

элемент этой строки, так как он отличен от нуля: 0111 a . Переписываем 

разрешающую первую строку без изменения.  

«Обнуляем» первый столбец, для чего: 



–  вместо второй строки записываем ее сумму с разрешающей первой 

строкой, умноженной на (-1): )1(1.2.2.  СтрСтрСтр ; 

–  вместо третьей строки записываем ее сумму с разрешающей первой 

строкой, умноженной на (-1): )1(1.3.3.  СтрСтрСтр ; 

–  вместо четвертой строки записываем ее сумму с разрешающей первой 

строкой, умноженной на (-3): )3(1.4.4.  СтрСтрСтр . 

Получаем эквивалентную матрицу 



























6620

4 41   0

2 230

2   3    2   1

~BA . 

 Упростим ее с целью дальнейших преобразований, для чего: 

–  поменяем местами вторую и третью строки: 3.2. СтрСтр  ; 

–  четвертую строку умножим на  –(1/2): )21(4.4. СтрСтр . 

Получаем эквивалентную матрицу 

























3    3   1   0

2 230

4 41   0

2   3    2   1

~BA . 

 На втором шаге в качестве разрешающей (ведущей) строки выбираем 

вторую строку, а в качестве разрешающего элемента выбираем диагональный 

элемент этой строки, так как он отличен от нуля: 0122 a . Переписываем 

разрешающую вторую строку без изменения. Бывшей уже разрешающей 

первую строку также переписываем без изменения. 

«Обнуляем» второй столбец, для чего: 

–  вместо третьей строки записываем ее сумму с разрешающей второй 

строкой, умноженной на 3: 32.3.3.  СтрСтрСтр ; 

–  вместо четвертой строки записываем ее сумму с разрешающей второй 

строкой, умноженной на (-1): )1(2.4.4.  СтрСтрСтр . 



Получаем эквивалентную матрицу  

























7     7   0   0

41 410   0

4  4 1   0

2     3    2   1

~BA . 

  Упростим ее с целью дальнейших преобразований, для чего: 

–  третью строку умножим на  –(1/14): )141(3.3. СтрСтр ; 

–  четвертую строку умножим на  (1/7): )71(4.4. СтрСтр . 

Получаем эквивалентную матрицу 























1     1    0   0

1     1    0   0

4  4 1   0

2     3    2   1

~BA . 

На третьем шаге в качестве разрешающей (ведущей) строки выбираем 

третью строку, а в качестве разрешающего элемента выбираем диагональный 

элемент этой строки, так как он отличен от нуля: 0133 a . Переписываем 

разрешающую третью строку без изменения. Бывшими уже разрешающими 

первую и вторую строки также переписываем без изменения. 

«Обнуляем» третий столбец, для чего: 

–  вместо четвертой строки записываем ее сумму с разрешающей третьей 

строкой, умноженной на (-1): )1(3.4.4.  СтрСтрСтр . 

Получаем эквивалентную матрицу 























0    0    0   0

1     1    0   0

4  4 1   0

2     3    2   1

~BA , 

ранг которой равен трем (количеству ненулевых строк). 

Тогда матрица, эквивалентная матрице системы, имеет вид 

























0 

1 

4

3 

    

0

0

1

2

      

0

0

0

1

~A , 

и ее ранг также равен трем (количеству ненулевых строк). 

 Таким образом, на первом этапе метода Гаусса (прямой ход) установлено, 

что ранг матрицы системы равен рангу расширенной матрицы системы  

3)()(  BArAr  

и равен числу неизвестных. Следовательно, система совместна и имеет 

единственное решение. 

 Найдем далее это решение.  

2) Обратный ход метода Гаусса. 

 Полученная расширенная матрица системы  























0    0    0   0

1     1    0   0

4  4 1   0

2     3    2   1

~BA  

соответствует системе уравнений (нулевая строка может быть отброшена) 















.1                   

,44         

,232

3

32

321

x

xx

xxx

  

 Заметим, что определитель системы  

01

100

410

321

  

есть базисный минор третьего порядка расширенной матрицы BA , в который в 

качестве базисных столбцов входят столбцы, составленные из коэффициентов 

при неизвестных 32,1 , xxx . 

Поднимаясь снизу вверх (обратный ход метода Гаусса), последовательно 

находим: 



–  из последнего 3-го уравнения неизвестное 13 x ; 

–  из 2-го уравнения неизвестное 2x  путем подстановки в это уравнение 

уже найденного неизвестного 13 x : 

.0

;041444

2

32





x

xx
 

–  из 1-го уравнения неизвестное 1x  при подстановке в него уже 

найденных неизвестных 0 ,1 23  xx : 

.121302232 321  xxx  

 Таким образом, единственное решение системы  

1  ;0  ;1 321  xxx . 

2) Ранг расширенной матрицы меньше числа неизвестных  (r<n). 

Преобразуем исходную систему уравнений 























,  ...                                     

.........................................................................

,       ...                                

,       ...                   

,       ...       

33333

22323222

11313212111

rnrnrrr

nn

nn

nn

xx

xx

xxx

xxxx









 

перенося в правые части уравнений все слагаемые, содержащие неизвестные 

nrr xxx ,...,, 21  . Тогда система принимает вид 































....                                                         

................................................................................................................

,...       ...                                

,...       ...                   

,...       ...       

11,

311,333333

211,222323222

111,111313212111

nrnrrrrrrr

nnrrrr

nnrrrr

nnrrrr

xxx

xxxx

xxxxx

xxxxxx









 

Неизвестным nrr xxx ,...,, 21   можно придавать любые значения, и поэтому они 

называются свободными. Неизвестные rxxx ,...,, 21 , соответствующие базисным 

столбцам, называются базисными. Из данной системы легко найти выражения 

базисных неизвестных через свободные. Поскольку свободные неизвестные 

могут принимать любые значения, то в рассматриваемом случае r<n система 



является совместной и неопределенной: она имеет бесчисленное множество 

решений. 

 Решение этой системы находится обратным ходом метода. Поднимаясь 

снизу вверх последовательно находим: 

–  из последнего r-го уравнения неизвестное 

rrnrnrrrrr xxx  )...( 11,   ; 

–  из )1( r -го уравнения неизвестное 1rx  путем подстановки в это 

уравнение уже найденного неизвестного rx ; 

–  из i-го уравнения неизвестное ix  при подстановке в него уже 

найденных величин 11,...,,  irr xxx ; 

–  и так далее до первого уравнения, из которого при подстановке в него 

уже найденных величин 21,...,, xxx rr   находим 1x . 

  Пример. 

  Решить методом Гаусса систему линейных уравнений  















.128       2

,17   5  2 4

,142 3   2

54321

54321

54321

xxxxx

xxxxx

xxxxx

 

 Решение. Составим расширенную матрицу системы: 





























1

1

1

   

2

7

4

   

8

1

2

   

1

5

3

   

1

2

1

   

2

4

2

BA . 

Приведем ее с помощью элементарных преобразований к трапециевидной 

форме. 

 На первом шаге в качестве разрешающей (ведущей) строки выбираем 

первую строку, а в качестве разрешающего элемента выбираем диагональный 

элемент этой строки, так как он отличен от нуля: 0211 a . Переписываем 

разрешающую первую строку без изменения.  

«Обнуляем» первый столбец, для чего: 



–  вместо второй строки записываем ее сумму с разрешающей первой 

строкой, умноженной на (-2): )2(1.2.2.  СтрСтрСтр ; 

–  вместо третьей строки записываем ее сумму с разрешающей первой 

строкой, умноженной на (-1): )1(1.3.3.  СтрСтрСтр . 

Получаем эквивалентную матрицу 

































2

1

1

   

2

1

4

   

10

5

2

   

2

1

3

   

0

0

1

   

0

0

2

~BA . 

На втором шаге в качестве разрешающей (ведущей) строки выбираем 

вторую строку, а в качестве разрешающего элемента выбираем 0123 a , так 

как диагональный элемент этой строки равен нулю: 022 a . Переписываем 

разрешающую вторую строку без изменения. Бывшей уже разрешающей 

первую строку также переписываем без изменения. 

«Обнуляем» третий столбец (второй столбец уже «обнулен» в 

результате предыдущей операции), для чего: 

–  вместо третьей строки записываем ее сумму с разрешающей второй 

строкой, умноженной на (-2): )2(2.3.3.  СтрСтрСтр . 

Получаем эквивалентную матрицу 

























0

1

1

   

0

1

4

   

0

5

2

   

0

1

3

   

0

0

1

   

0

0

2

~BA . 

ранг которой равен двум (количеству ненулевых строк). 

Тогда матрица, эквивалентная матрице системы, имеет вид 

























   

0

1

4

   

0

5

2

   

0

1

3

   

0

0

1

   

0

0

2

~A , 

и ее ранг также равен двум (количеству ненулевых строк). 

 Таким образом, на первом этапе метода Гаусса (прямой ход) установлено, 

что ранг матрицы системы равен рангу расширенной матрицы системы  



2)()(  BArArr  

и меньше числа неизвестных n=5. Следовательно, система является совместной 

и неопределенной: она имеет бесчисленное множество решений. 

  Найдем далее эти решения. 

2) Обратный ход метода Гаусса. 

 Полученная расширенная матрица системы  
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соответствует системе уравнений (нулевая строка может быть отброшена) 









,1   5                

,14232

543

54321

xxx

xxxxx
 

которая эквивалентна исходной системе уравнений. 

 В данном случае число неизвестных в системе n=5, а ранг r=2. Поэтому  

в качестве базисных неизвестных могут быть выбраны r=2 любых неизвестных, 

минор второго порядка для которых является базисным, т.е. отличен от нуля. 

Остальные n-r=3 неизвестных будут свободными. 

 Всего для матрицы системы можно составить (в этом легко убедиться 

хотя бы простым перебором) 10 миноров второго порядка, каждый из которых 

содержит два столбца при соответствующих неизвестных: 

1) 0
00

12
),( 21 


 xx ;            2) 02

10

32
),( 31 


 xx ; 

3) 010
50

22
),( 41 


 xx ;    4) 02

10

42
),( 51 


 xx ; 

5) 01
10

31
),( 32 




 xx ;    6) 05

50

21
),( 42 


 xx ; 

7) 01
10

41
),( 52 




 xx ;    8) 013

51

23
),( 43 




 xx ; 

9) 01
11

43
),( 53 


 xx ;    10) 018

15

42
),( 54 




 xx . 



 Видно, что все миноры, кроме первого, отличны от нуля, т.е. являются 

базисными. Значит, в качестве базисных неизвестных можно взять любую пару, 

кроме неизвестных 21, xx . 

 Выберем в качестве базисных неизвестных, например, 32 , xx . Тогда 

541 ,, xxx   будут свободными неизвестными. Преобразуем систему уравнений 
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



,1   5                

,14232

543

54321

xxx

xxxxx
 

оставляя в левой части все слагаемые, содержащие базисные неизвестные 32 , xx  

и перенося в правые части уравнений все слагаемые, содержащие свободные 

неизвестные 541 ,, xxx . Тогда система принимает вид 









.51          

,42213

543

54132

xxx

xxxxx
 

 Из этой системы обратным ходом метода Гаусса находим решение 

 ,51 543 xxx   

,1322     

42)51(32142321

541

5454154312

xxx

xxxxxxxxxx




 

или 

 .51   ;1322 5435412 xxxxxxx   

 Полученное решение называют общим, оно содержит бесчисленное 

множество решений, поскольку 541 ,, xxx  могут принимать любые значения. При 

этом каждому упорядоченному набору чисел 541 ,, xxx  соответствует одно 

решение, называемое частным. 

 Частное решение, когда все свободные неизвестные полагаются равными 

нулю, называется базисным решением. 

 Для рассматриваемых базисных неизвестных 32 , xx  и свободных 

неизвестных 541 ,, xxx  базисное решение имеет вид 

0  ;0  ;1  ;2  ;0 54321  xxxxx . 



 Всего в данном примере система имеет 9 базисных решений, 

соответствующих выбору базисных и свободных неизвестных согласно выбору 

базисного минора. Эти базисные решения можно найти для оставшихся восьми 

пар базисных неизвестных аналогично тому, как это сделано выше для 

базисных неизвестных 32 , xx , а можно найти из уже полученного общего 

решения, полагая соответствующие свободные неизвестные равными нулю.  

 Пусть, например, в качестве базисных неизвестных выбраны 54 , xx . 

Тогда, полагая свободные неизвестные 0  ;0  ;0 321  xxx , из найденного 

ранее общего решения  

5435412 51   ;1322 xxxxxxx   

получим еще одно, соответствующее базисным неизвестным  54 , xx , базисное 

решение: 
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КОМПЛЕКСНЫЕ ЧИСЛА. 

 

1.14. Понятие комплексного числа. Различные формы комплексных чисел. 

 Пусть на плоскости введена декартова прямоугольная система координат. 

 Определение. Комплексным числом называется выражение 

, ( )z x yi z a bi     (где x и y – действительные числа, а i – мнимая единица , 

определенная равенствами 1i    или 2 1i   . x называется действительной 

частью и обозначается Rex z , а y называется мнимой частью и обозначается 

Imy z . И обратно, каждую точку ( ; )M x y  координатной плоскости можно 

рассматривать как образ комплексного числа z x yi   (рис. 1.3). 



 

 Рис. 1.3 Изображение комплексного числа на плоскости. 

 Комплексное число удобно изображать точками плоскости. Комплексное 

число z x yi   представим точкой с координатами ( , )x y . 

 Таким образом, имеется вещественно-однозначное соответствие между 

множеством комплексных чисел и множеством точек плоскости. 

Определение. Плоскость, на которой изображаются комплексные числа, 

называется комплексной плоскостью. 

Определение.  Ось абсцисс называется действительной осью, на ней 

лежат действительные числа 0z x i x    ; ось ординат называется мнимой 

осью, на ней лежат чисто мнимые комплексные числа 0z yi  . 

Определение. Два комплексных числа z x yi   и z x yi  , отличающиеся 

лишь знаком мнимой части, называются сопряженными (рис. 1.3). 

Определение. Запись комплексного числа z в виде iyxz   называется 

его алгебраической формой. 

 Самым главным свойством комплексных чисел является возможность 

определить сложение, вычитание, умножение и деление этих чисел, 

удовлетворяющих естественным требованиям. При этом действительные числа 

можно рассматривать как некоторое подмножество в множестве комплексных 

чисел и все операции там совпадают. 

 Примем два соглашения: 

1) два комплексных числа 1 1x iy  и 2 2x iy  считаются равными, если 1 2x x  и 

1 2y y ; 



2) комплексное число 0z   тогда и только тогда, когда 0x   и 0y  . 

Комплексное число z x yi   можно представить в виде радиус-вектора 

 ;r OM x y  , соединив начало координат с точкой ( ; )M x y  (рис. 1.4) 

 

                      Рис. 1.4. Изображение комплексного числа 

Определение.  Длина вектора r , изображающего комплексное число z, 

называется модулем этого числа и обозначается z r . 

Определение. Величина угла между положительным направлением 

действительной оси и вектором r , изображающим комплексное число, 

называется аргументом этого комплексного числа и обозначается Argz  или  . 

Аргумент комплексного числа z – многозначная величина и определяется с 

точностью до слагаемого 2 , ( 0, 1, 2,...) : arg 2 ,n n Argz z n      , где arg z  − главное 

значение аргумента, заключенное в промежутке ( ,  .  

 Для всякого комплексного числа z x yi   длина радиуса-вектора равна 

2 2 ,r z x y    а угол   таков, что cos , sin .
x y

r r
    Аргумент z можно 

определить по формуле .
y

tg
x

    

Изобразим комплексное число z вектором  ;OM x y  и из треугольника 1OMM  

выразим модуль r  и аргумент   этого комплексного числа (рис. 1.4): 

                                                cos , sin .x r y r                                             (1.1) 

Если в выражении iyxz   заменить х и у полученными значениями (1.1), то 

получим: 

                                                   (cos sin ).z r i                                              (1.2) 



 Это выражение называют тригонометрической формой комплексного 

числа z. 

 Так как arg 2 ,Argz z n     то cos cos(arg 2 ) cos(arg ),z n z     

sin sin(arg ).z   

Поэтому при переходе от алгебраической формы комплексного числа к 

тригонометрической достаточно определить лишь главное значение аргумента 

комплексного числа z, т.е. считать arg .z   

Учитывая, что arg ,z n     а главное значение 
y

arctg
x

 заключено между 
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         Рис. 1.5. Связь между главным значением аргумента z и 
x

y
arctg  

Два комплексных числа, записанные в тригонометрической форме, равны тогда 

и только тогда, когда модули у них равны, а аргументы отличаются на число, 

кратное 2 . 

Если (cos sin ) (cos sin ),r i i        то r   и 2 , ( 0; 1, 2,...).n n        



Модуль комплексного числа нуль (0) равен нулю: 0 0 . В качестве же 

аргумента нуля можно принять любой угол  . Действительно, для любого угла 

  имеет место равенство: 

    0 0 (cos sin ).i     

 Комплексное число имеет форму представления, которая называется 

показательной:  

                                                    
i

z re


 . 

 Так же, как и в тригонометрической форме, r – это модуль комплексного 

числа, а   – аргумент. 

Показательная форма записи комплексного числа (cos sin )z x yi r i      

имеет вид: 

                                  
iz re  , где cos sinie i      

Она называется формулой Эйлера и представляет собой определение 

показательной функции 
ie 

. 

Пример. Представить комплексное число 1 3z i   в тригонометрической 

и показательной формах. 

Решение. Найдем модуль и аргумент комплексного числа 

z: 2 21 ( 3) 2z r     , 
1

cos
2

  , 
3

sin
2




 , следовательно, угол 

находится в четвертой четверти, т.е. 
5

3


  . 

Таким образом, тригонометрическая форма записи комплексного числа 

имеет вид: 
5 5

2(cos sin )
3 3

z i
 

  , а показательная форма имеет вид: 

5

32
i

z e


 . 

Рассмотрим некоторые примеры. 

 Пример. Изобразить на плоскости множество комплексных чисел, для 

которых выполняется условие Re 5.z   



 

 Пример. Изобразить на плоскости множество комплексных чисел, для 

которых выполняется условие 
Re 0

Im 2

z

z





. 

 

 Пример. Изобразить на плоскости множество комплексных чисел, для 

которых выполняется условие 5.z   

 



 Пример. Изобразить на плоскости множество комплексных чисел, для 

которых выполняется условие 
3

arg
6 4

z
 
    

 

 Пример.  Изобразить на плоскости множество комплексных чисел, для 

которых выполняется условие 

3
arg

6 4

5

z

z

 
 


 

  

 

 

1.15 Действия над комплексными числами 

1.15.1 Арифметические операции над комплексными числами в 

алгебраической форме. 

 Сложение, вычитание и умножение комплексных чисел, заданных в 

алгебраической форме, производят по обычным правилам алгебры. Сложение 

(вычитание) комплексных чисел сводится к сложению (вычитанию) их 

действительных и мнимых частей.  



0

z 1
+

у

х

z 2

z1

z2

0

z
1 -

у

х

z
2

z1

z2

 Пусть даны два комплексных числа 1 1 1z x iy  , 2 2 2z x iy  . 

а) 1 2 1 2 1 2( ) ( )z z x x i y y                          (1.3) 

б) 1 2 1 2 1 2( ) ( )z z x x i y y                       (1.4) 

При умножении комплексных чисел заменяют 2i  на (–1): 

в) 1 2 1 1 2 2 1 2 1 2 1 2 2 1( ) ( ) ( ) ( )z z x iy x iy x x y y i x y x y                               (1.5) 

 Отметим важное свойство формулы (1.5): 

                                         2 2( ) ( )x iy x iy x y                            (1.6) 

 Комплексные числа x iy  и x iy , как было отмечено выше, называются 

сопряженными и употребляют обозначения ,x iy x iy x iy x iy        

 Справедливы свойства сопряженных чисел:  

                                                2 ;z z Rez    

                                                
22 2 ;z z x y z     

                                                2 2z r x y    − модуль комплексного числа. 

 При делении комплексных чисел числитель и знаменатель умножают на 

число, сопряженное знаменателю: 

1 1 1 1 1 2 2 1 2 1 2 1 2 2 1

2 2

2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 2 1
22 2 2 2

2 2 2 2

( )( ) ( )
г

( )( )

, ( 0).

)
z x iy x iy x iy x x y y i x y x y

z x iy x iy x iy x y

x x y y x y x y
i z

x y x y

      
   

   

  
  

 

                          (1.7) 

 Геометрически сложение комплексных чисел истолковывается как 

сложение векторов по правилу параллелограмма (рис. 1.6(а)). 

 

 

 

 

 

 

                              а)                                                             б)  

Рис. 1.6. Геометрическое представление суммы и разности комплексных чисел 



Разность комплексных чисел 1 2z z  изображают вектором, идущим из конца 

вычитаемого вектора в конец уменьшаемого (рис. 1.6(б)). 

 При умножении комплексного числа z x iy   на действительное число k 

действительная и мнимая части z умножаются на число k: 

    .k z kx iky    

Геометрически произведение комплексного числа z на действительное число k 

дает вектор k z , длина которого равна длине вектора z, умноженной на k , а 

направление совпадает с направлением z, если 0k  , и противоположно 

последнему, если 0k  . 

Пример. Вычислить 
2 3

1

i
z

i





 и указать вещественную и мнимую части 

полученного комплексного числа. 

Решение. Действуя в соответствии с правилами (1.6), (1.5), получаем: 

2

2

(2 3 )(1 ) 2 3 2 3 (2 3) 5 1 5 1 5
;

(1 )(1 ) 1 1 1 2 2 2

i i i i i i i
z i

i i i

        
      

   
 

Поэтому 
1 5

Re , Im .
2 2

z z    

Теорема 1.1. Модуль разности двух комплексных чисел 2 1z z  равен 

расстоянию между точками 1z  и 2z ; аргумент разности, т.е.  2 1arg z z , равен 

углу наклона к положительному направлению оси Ох вектора, идущего из точки 

1z  в точку 2.z  

Доказательство. Положим 1 1 1 2 2 2,z x iy z x iy     и 2 1 2 1, .x x y y   

Тогда 2 1 2 1 2 1( ) ( ).z z x x i y y      Отсюда модуль разности двух комплексных чисел 

равен:    
2 2

2 1 2 1 2 1z z x x y y     , но это выражение дает расстояние между 

двумя точками  1 1,x y  и  2 2,x y . Аргумент разности   2 1
2 1

2 1

arg ,
y y

z z arctg
x x


 


 что 

выражает угол наклона к оси Ох вектора, соединяющего точки 1z  и 2z  (рис.1.6).

  



  

            Рис. 1.6. Геометрический смысл модуля и аргумента суммы и разности        

                                                   комплексных чисел 

Примеры. 

1. Равенство 1z   определяет множество точек z, расстояния которых от 

начала координат равны единице, т.е. окружность с центром в начале 

координат и радиусом, равным 1. 

2. Равенство z a r   (где а – комплексное число, r − действительное число) 

характеризует точки z, расстояние которых от точки а есть постоянная 

величина, равная r, то есть окружность с центром в точке а радиуса r.  

3. Равенство z a z b    (где а, b – комплексные числа) характеризует точки 

z, расстояние z a  которых от точки а равно расстоянию z b  тех же 

точек от точки b. Геометрическое место таких точек z есть перпендикуляр, 

проведенный через середину отрезка, соединяющего точки а и b. 

 

1.15.2. Умножение и деление комплексных чисел в тригонометрической 

форме 

  Пусть комплексные числа 1z  и 2z  заданы в тригонометрической форме, 

то есть       1 1 1 1(cos sin ),z r i           2 2 2 2(cos sin ),z r i    тогда 

1 2 1 1 1 2 2 2 1 2 1 2 1 2

2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

(cos sin ) (cos sin ) [cos cos sin cos

cos sin sin sin ] [(cos cos sin sin )

(sin cos cos sin )] [cos( ) sin( )]

z z r i r i r r i

i i r r

r r i

       

       

       

      

    

     

 

1 2 1 1 1 2 2 2 1 2 1 2 1 2(cos sin ) (cos sin ) [cos( ) sin( )]z z r i r i r r i                             (1.8) 



1 1 1 1 1
1 2 1 2

2 2 2 2 2

(cos sin )
[cos( ) sin( )]

(cos sin )

z r i r
i

z r i r

 
   

 


    


             

   (1.9) 

 Итак, при умножении комплексных чисел в тригонометрической форме 

модули их перемножаются, а аргументы складываются, при делении – модули 

делятся, а аргументы вычитаются. 

 Формула возведения в степень комплексного числа: 

                       [ (cos sin )] (cos sin )n nr i r n i n        −    (1.10) 

                              формула Муавра. 

При возведении комплексного числа в целую степень модуль его возводится в 

эту степень, а аргумент умножается на показатель степени.  

Например, при 1r   и 3n   получим по формуле Муавра 

   3(cos sin ) cos3 sin3 .i i       

Пример. Определить модуль и аргумент числа 1 3,z i   записать это 

число в тригонометрической форме. 

Решение. По определению  
2

21 3 4 2.z       Для определения 

аргумента воспользуемся формулами: 

1
cos

2

3
sin

2









 



. Учитывая, что точка (1; 3),M  

соответствующая заданному комплексному числу, лежит в четвертой четверти, 

получаем, что 
5

.
3

Argz


    Тригонометрическая форма заданного 

комплексного числа имеет вид: 
5 5

2(cos sin ).
3 3

z i
 

   

Пример. Вычислить:  13( 1 ) .i    

Решение. Для того, чтобы воспользоваться формулой Муавра, необходимо 

представить комплексное число в тригонометрической форме. Имеем: 

2 2 1 1
( 1) 1 2, cos sin ,

2 2
z и         т.е. 

4

3


   (так как соответствующая 



точка (-1;1) лежит во второй четверти). Следовательно, представим комплексное 

число в тригонометрической форме 

 
13 133 3 13 3 13 3

1 2 cos sin 1 2 cos sin .
4 4 4 4

i i и i i
       

          
   

 

Учитывая, что 
39

10 ,
4 4

 
   используя свойства тригонометрических функций 

и принимая во внимание правила действий со степенями, получаем: 

 
13 6 1 1

1 2 2 cos sin 64 2 64 64 .
4 4 2 2

i i i i
       

                 
      

 

Определение. Корнем заданной степени из комплексного числа называется  

комплексное число, которое, будучи возведено в заданную степень, дает 

подкоренное число: .nn z a z a    

Можно показать, что для извлечения корня из комплексного числа надо извлечь 

корень из его модуля, а аргумент разделить на показатель корня. 

 Пусть (cos sin ) (cos sin ),n r i i        тогда 

                      (cos sin ) (cos sin ), .n n nn i n r i r r              

Таким образом, 

               
2 2

(cos sin ) cos sin , 0,1,..., 1nn
k k

r i r i k n
n n

   
 

  
     

 
       (1.11) 

                              
2

2 0,1,..., 1
k

n k k n
n

 
   


      . 

 Таким образом, для извлечения корня из комплексного числа надо 

извлечь корень из его модуля, а аргумент разделить на показатель корня. 

Пример.  Найти все значения 5 1 . 

Решение. Так как  )1arg( ,11 , то  55 sincos1  i  

                          
5

2
sin

5

2
cos

 k
i

k 



 , где 4 ,3 ,2 ,1 ,0k . 

При 0k  имеем:   5878,08090,0
5

sin
5

cos1 1
5  ii


; 

        1k :   9511,03090,0
5

3
sin

5

3
cos1 2

5  ii


; 



        2k :   1sincos1 3
5   i ; 

        3k :   9511,03090,0
5

2
sin

5

2
cos

5

7
sin

5

7
cos1 4

5  iii


; 

        4k :   5878,08090,0
5

sin
5

cos
5

9
sin

5

9
cos1 5

5  iii


. 

Эти пять значений 5 1  изображаются вершинами правильного пятиугольника, 

вписанного в окружность единичного радиуса с центром в начале координат 

(рис. 1.7). Вообще, нетрудно убедиться, что n значений корня геометрически 

изображаются n точками, лежащими в вершинах правильного n-угольника с 

центром в начале координат.       

 

        Рис. 1.7. Изображение корней 5 1  на комплексной плоскости. 

 Запишем операции над комплексными числами в показательной форме. 

 Пусть 1 2

1 1 2 2, ,
i iz re z r e 

   тогда 

                         1 2 1 2( ) ( )1 1
1 2 1 2 2

2 2

, , 0 ,
i iz r

z z r r e e r
z r

    
    

                        

2

, , 0,1,2,..., 1.
k

i
n n in n n nz r e z re k n

 




     

Пример. Решить уравнение 2 3 10 0.x x    

Решение. Дискриминант данного уравнения:  
2

3 4 10 31D        меньше 

нуля, но теперь мы учитываем понятие мнимой единицы: 

1,2

3 31 3 31 1 3 31
,

2 2 2

i
x

     
    т.е. 1 2

3 31 3 31
, .

2 2 2 2
x i x i     

 



2 ВЕКТОРНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 

 

ВЕКТОРНАЯ АЛГЕБРА 

 

  2.1 Векторы на плоскости и в пространстве 

 Определение. Вектором называется направленный отрезок AB с 

начальной точкой A и конечной точкой B. 

 Обозначают вектор через ABAB  или , либо одной буквой aa  или 


. 

Геометрически вектор излбражают в виде стрелки (рис. 2.1). 

 

Рис.2.1 Изображение вектора  

Определение. Длиной или модулем AB  вектора AB  называется 

неотрицательное число, равное длине отрезка, изображающего вектор. 

Определение. Вектор 0


, длина которого равна нулю (в силу этого он 

не имеет определенного направления) называется нулевым или нуль-вектором.  

Определение. Вектор e


, длина которого равна единице ( 1e


), 

называется единичным вектором. 

Определение. Векторы называются коллинеарными, если они лежат на 

одной прямой или на параллельных прямых.  

Определение. Векторы называются компланарными, если они лежат в 

одной плоскости или в параллельных плоскостях. 

Определение. Два вектора считаются равными, если: 

1) модули векторов равны, 

2) векторы коллинеарны, 

3) векторы одинаково направлены. 

 A 

B 

AB  

a


 



Из определения равенства векторов вытекает, что векторы равны, если их 

можно совместить друг с другом параллельным переносом. Такие векторы 

называют свободными и для них безразлично, где поместить начало вектора. 

Определение. Ортом данного вектора называется вектор единичной 

длины, совпадающий по направлению с данным вектором. 

Орт вектора a


можно записать в виде  

a

a
ea 



  . 

 

2.2 Линейные операции над векторами 

 Определение. Линейными операциями или действиями над векторами 

называются действия сложения векторов и умножения вектора на число 

(скаляр). 

Определение. Произведением вектора a


 на число   называется 

вектор ab


 , имеющий длину ab


  , направление которого совпадает с 

направлением вектора a


, если 0 , и противоположно ему, если 0 . 

Очевидно, что векторы a


 и ab


  коллинеарны. 

Определение. Суммой двух векторов a


 и b


 называется вектор 

bac


 , определяемый по правилу треугольника или параллелограмма 

(рис.2.2). 

Разностью двух векторов a

 и b


 называется вектор )( bac


 .  

 

Рис. 2.2 Сложение двух векторов a


 и b


  

a


 

a


 

b


 

b


 

bac


  



 

 Линейные операции над векторами подчиняются следующим правилам: 

для любых векторов  cba


,,  и любых чисел  ,  выполняются условия: 

1) abba


 ; 

2) )()( cbacba


 ; 

3) aa


 0 ; 

4) для любого вектора a


 существует такой вектор  a


 , называемый 

противоположным, что    0)(


 aa ; 

5) baba


  )( ; 

6) aaa


  )( ;    

7) aa


)()(   ; 

8) aa


1 . 

 

2.3 Скалярное произведение векторов 

 Определение. Углом между векторами a


 и b


называется угол между 

векторами, имеющими общее начало и равными векторам a


 и b


(рис. 2.3). 

 Угол между векторами a


 и b


 обозначается через ),( ba
 

. 

 Полагают, что 


),(0 ba


. Направление отсчета угла в пространстве не 

указывается, угол рассматривается по абсолютной величине. 

 
Рис.2.3 Угол между векторами a


 и b


 

a


 a


 

b


 

b


 

),( ba
 

 



 Определение. Скалярным произведением векторов a


 и b


называется 

число, равное произведению модулей векторов на косинус угла между 

векторами. 

 Обозначается скалярное произведение одним из следующих способов: 

bababa


 , ),,(  . 

 Согласно определению скалярного произведения 

),cos(),( bababa
 

 . 

 Скалярное произведение векторов обладает следующими свойствами: 

1) ),(),( abba


 ; 

2) линейность скалярного произведения по каждому из сомножителей: 

для любых векторов cba


,,  и любых чисел  ,  справедливы 

равенства: 

    а) ),(),(),( cbcacba


  ;  

    б) ),(),(),( cabacba


  . 

 Определение. Векторы a


 и b


называются ортогональными, если их 

скалярное произведение равно нулю. 

 Для векторов на плоскости и в пространстве понятие ортогональности 

векторов эквивалентно понятию перпендикулярности векторов. 

 Очевидно, что два ненулевых вектора перпендикулярны тогда и только 

тогда, когда их скалярное произведение равно нулю: 

0),(  baba


. 

 Действительно, из определения скалярного произведения для векторов a


 

и b


 вытекает, что 

1) если ba


 , то угол 2),( 


ba


 и 

002cos),cos(),( 


bababababa


 ; 



2) если 0),cos(),( 


bababa


, но 0,0  ba


, то 0),cos( 


ba


, 

поэтому 2),( 


ba


 и вектора a


 и b


 перпендикулярны. 

 Заметим, что нулевой вектор можно считать перпендикулярным 

(ортогональным) к любому вектору. 

 

2.4 Линейная зависимость и независимость векторов 

 Определение. Линейной комбинацией векторов naaa


,...,, 21  с 

коэффициентами n ,...,, 21  называется выражение 

nnaaa


  ...2211 . 

 Определение. Система ненулевых векторов naaa


,...,, 21  называется 

линейно независимой, если из равенства 0...2211


 nnaaa   следует 

0...21  n . В противном случае система векторов naaa


,...,, 21  

называется линейно зависимой. 

 Теорема 2.1. Система векторов naaa


,...,, 21  линейно зависима тогда и 

только тогда, когда один из этих векторов может быть представлен как 

линейная комбинация остальных.  

 Геометрический смысл линейной зависимости векторов очевиден для 

случаев векторов на плоскости и в пространстве. 

 В случае двух линейно зависимых векторов 1a


 и 2a


  , когда один вектор 

выражается через другой 

21 aa


 , 

векторы 1a


 и 2a


  коллинеарны, или, что то же самое, находятся на 

параллельных прямых. 

 В пространственном случае для трех линейно зависимых векторов 

321 ,, aaa


,  когда один из них, например, 1a


выражается через два других   

33221 aaa


  ,  



векторы 321 ,, aaa


 компланарны, или, что то же самое, лежат в одной плоскости 

или в параллельных плоскостях. 

 Иными словами, справедливы следующие утверждения: 

1) векторы a


 и b


линейно зависимы тогда и только тогда, когда они 

коллинеарны; 

2) векторы cba


,,  линейно зависимы тогда и только тогда, когда они 

компланарны. 

Эти же утверждения могут быть сформулированы в эквивалентной форме: 

1) векторы a


 и b


линейно независимы тогда и только тогда, когда они 

неколлинеарны;  

2)  векторы cba


,,  линейно независимы тогда и только тогда, когда они 

некомпланарны.  

 

2.5 Векторы в координатной форме 

 Определение. Базисом на плоскости называется упорядоченная пара 

неколлинеарных векторов этой плоскости. 

 Базисом в пространстве называется упорядоченная тройка 

некомпланарных векторов. 

 Векторы базиса на плоскости будут обозначаться через 21,ee


. 

 Векторы базиса в пространстве будут обозначаться через 321 ,, eee


. 

 Базис векторов удобно записывать в виде матрицы-строки, элементами 

которой служат векторы базиса: 

 ),( 21 ee


 – базис на плоскости; ),,( 321 eee


 – базис в пространстве.  

 Определение. Для произвольного вектора a


 на плоскости с базисом 

),( 21 ee


 справедливо представление 

2211 exexa


 ,  

которое называется разложением вектора a


 по базису ),( 21 ee


. 

 Числа 21, xx  называются координатами вектора a


 в базисе ),( 21 ee


. 



Определение. Для произвольного вектора a


 в пространстве с базисом 

),,( 321 eee


 справедливо представление 

332211 exexexa


 ,  

которое называется разложением вектора a


 по базису ),,( 321 eee


. 

 Числа 321 ,, xxx  называются координатами вектора a


 в базисе ),,( 321 eee


.  

 Теорема 2.2. Разложение любого вектора по базису, если оно существует, 

является единственным.  

 Таким образом, координаты любого вектора a


 в данном базисе 

определяются однозначно. Поэтому вектор a


 можно задать: 

–  на плоскости упорядоченной парой чисел – координат 21, xx  в базисе  

),( 21 ee


: 

 21, xxa 


  или   21, xxa 


; 

–  в пространстве упорядоченной тройкой чисел – координат 321 ,, xxx  в 

базисе  ),,( 321 eee


: 

 321 ,, xxxa 


  или   321 ,, xxxa 


. 

Из условия единственности разложения вектора по базису следует, что 

два вектора равны между собой тогда и только тогда, когда их 

соответствующие координаты равны. 

 Часто в приложениях используют ортонормированный базис, в котором 

базисными векторами являются орты, перпендикулярные друг другу (рис. 2.8). 

Орты имеют специальные обозначения: 

–  на плоскости jeie


 21  ,  и ортонормированный базис имеет вид 

),( ji


, причем jiji


   ;1 ; 

–  в пространстве kejeie


 321  , ,  и ортонормированный базис имеет 

вид ),,( kji


, причем kjkijikji


  , ,   ;1 . 

Координаты вектора a


 в ортонормированном базисе также имеют 

специальные обозначения: 



–  на плоскости  yxa ,


  или   yxa ,


;  

–  в пространстве  zyxa ,,


  или   zyxa ,,


.  

 

Рис.2.8 Ортонормированный базис на плоскости и в пространстве  

 

2.6 Декартова система координат 

Определение. Декартовой системой координат называется 

совокупность точки, называемой началом координат, обозначаемой обычно 

через O, и базиса.  

Если ),( 21 ee


 – базис на плоскости, а ),,( 321 eee


 – базис в пространстве, то 

декартовой системой координат на плоскости будет совокупность O, ),( 21 ee


; в 

пространстве – O, ),,( 321 eee


. 

С помощью заданной системы координат можно определить положение 

любой точки на плоскости или в пространстве. 

Определение. Соединяя начало координат O с произвольной точкой 

M, получаем вектор OM , который называется радиусом-вектором точки M 

(рис. 2.9). 

Координаты вектора OM  в данном базисе называются декартовыми 

координатами точки M в данной декартовой системе координат.  
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Рис.2.9 Декартова система координат на плоскости и в пространстве 

 

 Если на плоскости 2211 exexOM


 , то положение точки M однозначно 

определяется двумя координатами 21, xx , что записывается в виде ),( 21 xxM .  

 Для пространства 332211 exexexOM


 , положение точки M однозначно 

определяется тремя координатами 321 ,, xxx , что записывается в виде 

),,( 321 xxxM . 

Определение. Прямые, проходящие через начало координат O в 

направлении базисных векторов, называется осями координат. 

Оси координат, проходящие по направлениям векторов ),,( 321 eee


, 

называются соответственно осями абсцисс, ординат и аппликат. 

Определение. Для ортонормированного базиса ),( ji


 на плоскости и 

),,( kji


 в пространстве система координат называется декартовой 

прямоугольной системой координат (обычно предполагается, что орты kji


,,  

образуют правую тройку векторов). 

Координаты точки M обозначаются ),( yxM  для плоскости и ),,( zyxM  

для пространства (рис. 2.10). 
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Рис. 2.10 Декартова прямоугольная система координат 

  

Расстояние точки M от начала координат или, что то же самое, модуль 

вектора OM  легко находится по теореме Пифагора: 

22 yxOM   – на плоскости  и  222 zyxOM   – в пространстве. 

Ось абсцисс обозначается через Ox, ось ординат – Oy, ось аппликат – Oz. 

Координата x называется абсциссой, координата y – ординатой, 

координата z – аппликатой точки M.  

Три взаимно перпендикулярные плоскости Oxy, Oxz, Oyz, проходящие 

каждая через две соответствующие оси координат, называются координатными 

плоскостями; они делят все пространство на восемь октантов. 

 

2.7 Линейные операции над векторами в координатной форме 

 Рассмотрим действия над векторами в пространстве. 

 Пусть разложения векторов a


 и b


по базису ),,( 321 eee


 имеют вид 

332211 eeea


  , 

332211 eeeb


  . 
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 Тогда по правилам сложения векторов a


 и b


и умножения вектора на 

число   получаем 

.)()()(         

)()(

333222111

332211332211

eee

eeeeeeba











 

.)()()()( 332211332211 eeeeeea


   

 Если записать векторы a


 и b


 в виде 

 321 ,, a


, 

 321 ,, b


, 

то 

 332211 ,,   ba


, 

 321 ,,  a


. 

Заметим, что полученные правила имеют место и для векторов на 

плоскости, только надо в полученных соотношениях формально положить 

третью координату равной нулю. Так, если записать векторы на плоскости в 

виде 

 21,a


,   21,b


, 

то 

 2211 ,   ba


,   21, a


. 

В словесном выражении полученные результаты можно сформулировать 

следующим образом. 

Координаты суммы векторов равны суммам соответствующих 

координат слагаемых векторов. 

Координаты произведения вектора на число равны произведениям 

координат вектора на то же число. 

  Пример. 

Найти вектор bac


43  , если  1;6;2 a


,  5;2;0 b


. 

Решение.          23;10;620;8;03;18;65;2;041;6;23 c


. 

Получим условие коллинеарности векторов в координатной форме. 



Два вектора a


 и b


 коллинеарны (параллельны) тогда и только тогда, если 

существует вещественное число   такое, что 

ba


 . 

В кооодинатной форме это условие выражается в пространстве тремя 

равенствами 

332211  , ,   . 

Так как 















3

3

2

2

1

1  , , , то условие коллинеарности, или 

параллельности, векторов в пространстве выражают в форме равенств 

3

3

2

2

1

1












 . 

Аналогично для векторов на плоскости имеем 

2

2

1

1








 . 

В словесном выражении полученные результаты можно сформулировать 

следующим образом. 

Векторы коллинеарны (параллельны) тогда и только тогда, когда их 

соответствующие координаты пропорциональны. 

 

2.8 Скалярное произведение векторов в координатной форме 

Рассмотрим векторы в пространстве. 

 Пусть разложения векторов a


 и b


по ортонормированному базису ),,( kji


 

имеют вид 

kzjyixa


111  ;    kzjyixb


222  . 

 Из определения скалярного произведения векторов для 

ортонормированного базиса имеем: 

11110cos11),cos(),( 


iiiiii


; 

11110cos11),cos(),( 


jjjjjj


; 



11110cos11),cos(),( 


kkkkkk


; 

0011
2

cos11),cos(),( 
 

jijiji


; 

0011
2

cos11),cos(),( 
 

kikiki


; 

 0011
2

cos11),cos(),( 
 

kjkjkj


. 

 Итак 

1),(),(),(  kkjjii


;     0),(),(),(  kjkiji


. 

 Тогда на основании свойств скалярного произведения векторов, а также 

правил сложения векторов и умножения вектора на число получаем 

 

.),(),(),(        

),(),(),(        

),(),(),(        

))(),((),(

212121212121

212121

212121

222111

zzyyxxkkzzkjzykizx

jkyzjjyyjiyx

ikxzijxyiixx

kzjyixkzjyixba

















 

 Таким образом, для скалярного произведения векторов в координатной 

форме имеем: 

212121),( zzyyxxba 


. 

Заметим, что аналогичное выражение имеет место и для векторов на 

плоскости, только надо в рассматриваемых соотношениях формально 

положить третью координату равной нулю. Так, если записать векторы a


 и b


 

на плоскости в виде разложения по ортонормированному базису ),( ji


 

jyixa


11  ;    jyixb


22  , 

то 

2121),( yyxxba 


. 

В словесном выражении полученные результаты можно сформулировать 

следующим образом. 

 Скалярное произведение векторов в координатной форме равно сумме 

попарных произведений соответствующих координат. 



 Условие ортогональности (перпедикулярности) векторов в координатной 

форме в пространстве принимает вид: 

0212121  zzyyxx ,  

а на плоскости: 

02121  yyxx . 

  Пример. 

Найти скалярное произведение векторов   1;3;2 a


,  8;2;1b


. 

Решение. 08628)1()2()3(12),( ba


. 

В данном примере скалярное произведение векторов a


 и b


 равно нулю, 

следовательно, эти векторы ортогональны (перпендикулярны). 

 Рассмотрим некоторые задачи, решаемые скалярным произведением. 

1. Нахождение угла между векторами. 

Так как скалярное произведение ),cos(),( bababa
 

 , то  

ba

ba
ba 






 ),(
),cos( . 

 Пусть разложения векторов a


 и b


 в пространстве по 

ортонормированному базису ),,( kji


 имеют вид 

kzjyixa


111  ;    kzjyixb


222  . 

Тогда  
2
1

2
1

2
1 zyxa 


, 2

2
2
2

2
2 zyxb 


 и 

2
2

2
2

2
2

2
1

2
1

2
1

212121),cos(
zyxzyx

zzyyxx
ba






 
. 

 Если разложения векторов a


 и b


 на плоскости по ортонормированному 

базису ),( ji


 имеют вид 

jyixa


11  ;    jyixb


22  , 

то  2
1

2
1 yxa 


, 2

2
2
2 yxb 


 и 

2
2

2
2

2
1

2
1

2121),cos(
yxyx

yyxx
ba






 
. 



АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 

 

2.9 Прямая на плоскости 

1. Общее уравнение прямой 

 Пусть задана декартова прямоугольная система координат на плоскости и 

линейное уравнение 

0 CByAx        (2.1) 

в этой системе, причем 022  BA , т.е. хотя бы одно из действительных чисел 

A и B не равно нулю. 

Покажем, что уравнение  (2.1) есть уравнение прямой. 

Выберем точку ),( 000 yxM , координаты которой удовлетворяют этому 

уравнению: 

000  CByAx . 

Вычтем из уравнения  (2.1) почленно полученное равенство: 

0)()( 00  yyBxxA .           (2.2) 

 Левую часть этого уравнения можно рассматривать как скалярное 

произведение некоторого вектора  BAN ,


 на вектор  000 , yyxxMM  , 

где координаты произвольной точки ),( yxM  удовлетворяют уравнению (3.1.1). 

Тогда уравнение (2.2) можно представить в форме 

0),( 0 MMN


. 

 Вектор MM 0  перпендикулярен вектору N


 и, значит, все точки ),( yxM  лежат 

на прямой, проходящей через точку 0M  (рис. 2.11) перпендикулярно к вектору N


. 

 Обратно, для любой точки ),( yxM , лежащей на указанной прямой, 

вектор MM 0  перпендикулярен вектору N


. 

 Следовательно, уравнение (2.1) есть уравнение прямой.  

Определение. Уравнение вида 

0 CByAx  

называется общим уравнением прямой. 



 Вектор  BAN ,


, перпендикулярный к прямой (2.1), называется  

нормальным вектором  этой прямой. 

 

 

Рис. 2.11 Общее уравнение прямой 

Отметим частные случаи положения прямой относительно системы 

координат. 

1) Если в уравнении (2.1) свободный член 0C , т.е.  

0 ByAx , 

то прямая проходит через начало координат, так как координаты точки )0;0(O  

удовлетворяют уравнению. 

2) Если 0A , то нормальный вектор   0 ,,0  BBN


, параллелен оси 

ординат, значит, сама прямая параллельна оси абсцисс и имеет уравнение  

0CBy   или  BCy  . 

3) Если 0B , то нормальный вектор   0 ,0,  AAN


, параллелен оси 

абсцисс, значит, сама прямая параллельна оси ординат и имеет уравнение  

0CAx   или  ACx  . 

4) Если в двух последних случаях 0C , то прямые совпадают с осями 

координат: 

0y – ось абсцисс   и   0x  – ось ординат. 

 x  O 

   y 

N  

M0 



Заметим, что уравнение (2.1) можно умножить на любое число, не равное 

нулю, и полученное уравнение будет уравнением той же самой прямой. 

 

2. Параметрические уравнения прямой 

Положение прямой на плоскости определяется следующими данными: 

1) точкой ),( 000 yxM , через которую проходит прямая, называемой 

начальной точкой; 

2) вектором  nms ,


, параллельным прямой, называемым направляющим 

вектором прямой. 

Составим сначала уравнение прямой в векторной форме. 

Пусть даны начальный вектор 00 OMr 


 и направляющий вектор прямой 

s


 (рис. 2.12). 

 

Рис. 2.12 Уравнение прямой на плоскости в векторной форме    

Пусть rOM


  – радиус-вектор произвольной точки ),( yxM  прямой. 

Тогда   

MMOMOM 00  . 

Так как sMM


  0 , то существует такое число t, что stMM


0 . 

Полагая stMMrOMrOM


 000  , , , получаем уравнение прямой в 

параметрической векторной форме: 

y 

  x i


 

j


 

or


 

r


 

S


 

),( 000 yxM  
),( yxM  

O 

y 

  x i


 

j


 

or


 

r


 

S


 

),( 000 yxM  
),( yxM  

O 



strr


 0                                                (2.3) 

 Когда параметр t пробегает все вещественные значения    t , 

конец вектора r


 пробегает все точки прямой. 

 Выразим векторы srr


 , , 0  в координатной форме: 

  jnimnmsjyixOMrjyixOMr


 ,  ,  , 0000  

и подставим в уравнение (2.3): 

)(00 jnimtjyixjyix


    или    jntyimtxjyix


)()( 00  . 

 Приравнивая координаты при ортах i


 и j


, получим параметрические 

уравнения прямой на плоскости 









,

,

0

0

ntyy

mtxx
    где   t .   (2.4) 

Определение. Координаты m и n направляющего вектора прямой 

 nms ,


 называются направляющими коэффициентами прямой. 

  Пример. 

Составить параметрические уравнения прямой, проходящей через точку 

)3;2(0M  параллельно вектору  4;5s


. 

 Решение.  

Координаты начальной точки 3 ,2 00  yx , направляющие коэффициенты 

искомой прямой 4 ,5  nm . Параметрические уравнения прямой имеют вид: 









.43

,52

ty

tx
 

 

3. Каноническое уравнение прямой 

 Преобразуем параметрические уравнения прямой (2.4) к виду 
















,

,

0

0

t
n

yy

t
m

xx

 

откуда следует каноническое уравнение прямой  



n

yy

m

xx 00 



,        (2.5) 

проходящей через точку ),( 000 yxM  и имеющей направляющий вектор  

 nms ,


.  

 Заметим, что уравнение (2.5) может быть получено и из условия 

коллинеарности векторов  000 , yyxxMM   и  nms ,


, согласно которому 

соответствующие координаты коллинеарных векторов пропорциональны.  

 

4. Уравнение прямой, проходящей через две данные точки 

 Пусть через две данные точки ),( 111 yxM  и  ),( 222 yxM  требуется 

провести прямую. Возьмем на этой прямой любую (текущую) точку ),( yxM  и 

рассмотрим векторы  111 , yyxxMM   и  121221 , yyxxMM   (рис. 

2.12). Эти векторы коллинеарны (лежат на одной прямой), поэтому их 

соответствующие координаты пропорциональны: 

12

1

12

1

yy

yy

xx

xx









.      (2.6) 

Полученное уравнение называется уравнением прямой, проходящей через 

две данные точки. 

 

Рис. 2.13 Уравнение прямой на плоскости, проходящей через две данные 

точки 

 x  O 

   y 

),( 222 yxM  

),( yxM  

),( 111 yxM  



Заметим, что данное уравнение можно рассматривать также и как 

каноническое уравнение прямой с начальной точкой ),( 111 yxM  и 

направляющим вектором прямой  121221 , yyxxMMs 


. 

 

5. Уравнение прямой с угловым коэффициентом 

Пусть дана начальная точка прямой ),( 000 yxM  и ее направляющий 

вектор  nms ,


. Запишем параметрические уравнения прямой (2.4) в виде  









.

,

0

0

ntyy

mtxx
 

Если 0m , то разделив почленно второе уравнение на первое, получим  

m

n

xx

yy






0

0 . 

Но tg
m

n
 , где    –  угол, образованный прямой с положительным 

направлением оси абсцисс (рис. 2.15). 

Число tgk   называется угловым коэффициентом прямой. 

 

Рис. 2.15 Уравнение прямой с угловым коэффициентом 

 

Заменив k
m

n
 , из последнего уравнения получим уравнение 

  

),( yxM  

),( 000 yxM  

    O  x 

   y 

 m 

  n 
s


 

0x  x  

0y  



)( 00 xxkyy         (2.7) 

которое называется уравнением прямой, проходящей через данную точку с 

данным угловым коэффициентом или уравнением пучка прямых с угловым 

коэффициентом. 

 В последнем случае считается, что угловой коэффициент k принимает все 

возможные значения  k , при этом все прямые пучка проходят через 

одну и ту же точку ),( 000 yxM , называемую центром пучка.  

 Из уравнения (2.7) получаем 00 kxykxy  . Положим bkxy  00 , 

тогда bkxy  . 

 Если 0x , то by  , где b – величина отрезка, отсекаемого прямой на 

оси ординат. 

 Уравнение прямой  

bkxy  ,      (2.8) 

где k – угловой коэффициент прямой, а b – величина отрезка, отсекаемого 

прямой на оси ординат, называется уравнением прямой с угловым 

коэффициентом. 

Если же в параметрических уравнениях прямой (2.4)  









.

,

0

0

ntyy

mtxx
 

0m , то направляющий вектор прямой  ns ,0


 и прямая параллельна оси 

ординат, а ее уравнение, как это следует из первого уравнения (2.4), принимает 

вид 00  xx  или 0xx  . 

 

6. Уравнение прямой в отрезках на осях 

 Пусть прямая не параллельна ни одной из координатных осей и не 

проходит через начало координат. Это значит, что в общем уравнении прямой 

0 CByAx  ни один из коэффициентов  A, B, C  не равен нулю. Прямая 

пересекает оси координат в точках ),0( ),0,( ba  (рис. 2.16). 

 



 

Рис. 2.16 Уравнение прямой в отрезках на осях 

 

Выразим коэффициенты в уравнении прямой через величины отрезков на 

осях a и b. Подставим в общее уравнение прямой координаты точек ),0( ),0,( ba  

и получим 

a

C
ACBaA  00 ; 

b

C
BCbBA  00 . 

Подставляя в общее уравнение прямой вместо A и B их значения, имеем 

0 Cy
b

C
x

a

C
. 

После переноса свободного члена C в правую часть уравнения и деления 

на  C  получаем уравнение прямой в отрезках на осях 

  1
b

y

a

x
.            (2.9) 

 

2.10 Угол между двумя прямыми на плоскости 

1) Пусть заданы две прямые общими уравнениями  

0111  CyBxA  и  0222  CyBxA , 

   y 

x O 

),0( b  

)0,(a  



где    222111 , ,, BANBAN   – нормальные векторы прямых. Очевидно, угол   

между прямыми будет равен углу между их нормальными векторами, поэтому 

2
2

2
2

2
1

2
1

2121

21
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),(
),cos(cos

BABA

BBAA

NN

NN
NN











 . 

 Условие перпендикулярности прямых совпадает с условием 

перпендикулярности нормальных векторов этих прямых:   

02121  BBAA , 

а условием параллельности прямых является условие параллельности их 

нормальных векторов, что выражаетcя пропорциональностью их 

соответствующих координат: 

2

1

2

1

B

B

A

A
 . 

2) Пусть две прямые заданы теперь параметрическими или каноническими 

уравнениями с направляющими векторами  111 ,nms   и  222 ,nms  . 

Очевидно, угол   между прямыми будет равен углу между их 

направляющими векторами, поэтому 

2
2

2
2

2
1

2
1

2121
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),(
),cos(cos

nmnm

nnmm

ss

ss
ss











 . 

 Условие перпендикулярности прямых совпадает с условием 

перпендикулярности направляющих векторов этих прямых   

02121  nnmm , 

а условием параллельности прямых является условие параллельности их 

направляющих векторов, что выражаетcя пропорциональностью их 

соответствующих координат: 

2

1

2

1

n

n

m

m
 . 

 3) Пусть теперь прямые заданы уравнениями с угловыми 

коэффициентами: 



11 bxky    и  22 bxky  , 

где 2211   ,  tgktgk   (рис.2.17). Требуется вычислить tg , где 12   . 

 

 

 

Рис. 2.17 Угол между двумя прямыми с угловыми коэффициентами 

 

По формуле из тригонометрии имеем 

21

12

21

12
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)(

kk
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tgtg

tgtg
tgtg
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

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Итак,  

21

12

1 kk

kk
tg




 . 

Если прямые параллельны, то 0  ,0 12  kktg , и условие 

параллельности прямых выражается равенством их угловых коэффициентов: 

21 kk  . 

Если прямые взаимно перпендикулярны, то 01  ;0)1( 21  kktgctg  , 

и условие перпендикулярности прямых можно представить в виде: 

121 kk   или  
1

2

1

k
k  . 
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1  

22 bxky   
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  2.11 Плоскость в пространстве 

1. Общее уравнение плоскости 

 Пусть задана декартова прямоугольная система координат в пространстве 

и линейное уравнение 

0 DCzByAx       (2.10) 

в этой системе, причем 0222  CBA , т.е. хотя бы одно из действительных 

чисел A, B и C  не равно нулю. 

Покажем, что уравнение  (2.10) есть уравнение плоскости. 

Выберем точку ),,( 0000 zyxM , координаты которой удовлетворяют этому 

уравнению: 

0000  DCzByAx . 

Вычтем из уравнения  (2.10) почленно полученное равенство: 

0)()()( 000  zzCyyBxxA .    (2.11) 

 Левую часть этого уравнения можно рассматривать как скалярное 

произведение некоторого вектора  CBAN ,,  на вектор 

 0000 ,, zzyyxxMM  , где координаты произвольной точки ),,( zyxM  

удовлетворяют уравнению (3.3.1). Тогда уравнение (3.3.2) можно представить в 

форме 

0),( 0 MMN . 

 Вектор MM 0  перпендикулярен вектору N  и, значит, все точки ),,( zyxM  

лежат на плоскости, проходящей через точку 0M  (рис. 2.18) перпендикулярно к 

вектору N . 

 Обратно, для любой точки ),,( zyxM , лежащей на указанной плоскости, 

вектор MM 0  перпендикулярен вектору N . 

 Следовательно, уравнение (2.10) есть уравнение плоскости.  

Определение. Уравнение вида 

0 DCzByAx  



называется общим уравнением плоскости. 

 Вектор  CBAN ,,


, перпендикулярный к плоскости (2.10), называется  

нормальным вектором  этой плоскости. 

 

Рис. 2.18 Общее уравнение плоскости 

Отметим частные случаи положения плоскости относительно системы 

координат: 

1) если в уравнении (2.10) свободный член 0D , т.е.  

0 CzByAx , 

то плоскость проходит через начало координат, так как координаты точки 

)0;0;0(O  удовлетворяют уравнению; 

2) если две из координат нормального вектора  CBAN ,,


 равны нулю, 

то плоскость параллельна одной из координатных плоскостей. Например, для 

 0,0,AN 


 плоскость 0 DAx  параллельна координатной плоскости yOz . 

3) Если одна из координат нормального вектора равна нулю, то плоскость 

параллельна одной из координатных осей. Например, для  0,,BAN 


 

плоскость 0 DByAx  параллельна оси аппликат. 

0M  
M  

N  

O  y 

   z 

 x 



Заметим, что уравнение (2.10) можно умножить на любое число, не 

равное нулю, и полученное уравнение будет уравнением той же самой 

плоскости.  

2. Уравнение плоскости в отрезках на осях 

 Пусть плоскость не параллельна ни одной из координатных осей и не 

проходит через начало координат. Это значит, что в общем уравнении плоскости 

0 DCzByAx  ни один из коэффициентов  A, B, C, D  не равен нулю. 

Плоскость пересекает оси координат в точках ),0,0(),0,,0( ),0,0,( cba  (рис. 2.19). 

Выразим коэффициенты в уравнении плоскости через величины отрезков 

на осях cba ,, . Подставим в общее уравнение плоскости координаты точек 

),0,0(),0,,0( ),0,0,( cba  и получим 

a

D
ADCBaA  000 ; 

b

D
BDCbBA  000 ; 

c

D
CDcCBA  000 . 

 

 

Рис. 2.19 Уравнение плоскости в отрезках на осях 

)0,,0( b  

),0,0( c  

)0,0,(a  

 x 

  y 

   z 

O 



Подставляя в общее уравнение плоскости вместо CBA ,,  их значения, имеем 

0 Dz
c

D
y

b

D
x

a

D
. 

После переноса свободного члена D в правую часть уравнения и деления 

на  D  получаем уравнение плоскости в отрезках на осях 

  1
c

z

b

y

a

x
.     (2.12) 

 

3. Уравнение плоскости, проходящей через три данные точки 

Даны три точки ),,( ),,,( ),,,( 333322221111 zyxMzyxMzyxM , не лежащие на 

одной прямой (рис. 2.20). Требуется найти уравнение плоскости, проходящей 

через эти точки.  

 

Рис.2.20 Уравнение плоскости, проходящей через три данные точки 

 

Пусть ),,( zyxM  – произвольная точка плоскости. Чтобы точка M лежала 

в плоскости, проходящей через точки 321 ,, MMM , необходимо и достаточно, 

чтобы векторы MMMMMM 13121  , ,  были компланарны.  

Условие компланарности векторов выражается равенством нулю их 

смешанного произведения 

0) , ,( 31211 MMMMMM . 

),,( 1111 zyxM  

),,( 2222 zyxM  

),,( 3333 zyxM  

),,( zyxM  



Если выразить векторы в координатной форме: 

 1111 ,, zzyyxxMM  , 

 12121221 ,, zzyyxxMM  ,  

 13131331 ,, zzyyxxMM  , 

то смешанное произведение можно записать в виде определителя, и уравнение 

плоскости, проходящей через три данные точки, примет вид 

0

131313

121212

111









zzyyxx

zzyyxx

zzyyxx

.   (2.13) 

 Чтобы привести уравнение (2.13) к общему виду, достаточно вычислить 

коэффициенты A, B, C, D, разлагая определитель по элементам первой строки. 

 Заметим, что если бы точки 321 ,, MMM  лежали на одной прямой, то 

вторая и третья строки в определителе уравнения (2.13) были бы 

пропорциональны и все коэффициенты уравнения плоскости были бы нулями. 

 

2.12 Угол между двумя плоскостями 

 Углом между двумя плоскостями называется угол между векторами, 

нормальными к этим плоскостям (рис. 2.21). 

 

Рис.2.21 Угол между плоскостями 

1N  

1N  2N  

2N  

  

Пл1 Пл2 



 Пусть плоскости Пл1 и Пл2 заданы общими уравнениями 

01111  DzCyBxA   и  02222  DzCyBxA . 

 Нормальные векторы к этим плоскостям соответственно равны 

 1111 ,, CBAN    и   2222 ,, CBAN  . 

 Тогда 

2
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 Условие перпендикулярности плоскостей совпадает с условием 

перпендикулярности нормальных векторов этих плоскостей:   

0212121  CCBBAA , 

а условием параллельности плоскостей является условие параллельности их 

нормальных векторов, что выражаетcя пропорциональностью их 

соответствующих координат: 

2

1

2

1

2

1

C

C

B

B

A

A
 . 

 

  2.13 Прямая в пространстве 

1. Параметрические уравнения прямой 

Положение прямой в пространстве можно определить следующими 

данными: 

1) точкой ),,( 0000 zyxM , через которую проходит прямая, называемой 

начальной точкой; 

2) вектором  pnms ,,


, параллельным прямой, называемым 

направляющим вектором прямой. 

Составим сначала уравнение прямой в векторной форме. 

Пусть даны  начальный вектор 00 OMr 


 и направляющий вектор прямой 

s


 (рис. 2.22). 



Пусть rOM


  – радиус-вектор произвольной точки ),,( zyxM  прямой. 

Тогда   

MMOMOM 00  . 

Так как sMM


  0 , то существует такое число t, что stMM


0 . 

Полагая stMMrOMrOM


 000  , , , получаем уравнение прямой в 

параметрической векторной форме: 

strr


 0                                                (2.14) 

 

Рис. 2.22 Уравнение прямой в пространстве в векторной форме    

 

 Когда параметр t пробегает все вещественные значения    t , 

конец вектора r


 пробегает все точки прямой. 

 Выразим векторы srr


 , , 0  в координатной форме: 

  kpjnimpnmskzjyixOMrkzjyixOMr


 ,,  ,  , 00000  

и подставим в уравнение (3.5.1): 

)(000 kpjnimtkzjyixkzjyix


   

или    

kptzjntyimtxkzjyix


)()()( 000  . 
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 Приравнивая координаты при ортах kji


,, , получим параметрические 

уравнения прямой в пространстве 















,

,

,

0

0

0

ptzz

ntyy

mtxx

     где   t .   (2.15) 

Определение. Координаты pnm ,,  направляющего вектора прямой 

 pnms ,,


 называются направляющими коэффициентами прямой. 

  Пример. 

Составить параметрические уравнения прямой, проходящей через точку 

)1;3;2(0 M  параллельно вектору  7;4;5s


. 

 Решение.  

Координаты начальной точки  1 ,3 ,2 000  zyx , направляющие 

коэффициенты искомой прямой 7 ,4 ,5  pnm . Параметрические 

уравнения прямой имеют вид: 















.71

,43

,52

tz
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tx

 

 

2. Канонические уравнения прямой 

 Преобразуем параметрические уравнения прямой (2.15) к виду 



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
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
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zz
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xx

 

откуда следуют канонические уравнения прямой  

p

zz

n

yy

m

xx 000 






,            (2.16) 



проходящей через точку ),,( 0000 zyxM  и имеющей направляющий вектор  

 pnms ,,


.  

 Заметим, что уравнение (3.5.3) может быть получено и из условия 

коллинеарности векторов  0000 ,, zzyyxxMM   и  pnms ,,


, согласно 

которому соответствующие координаты коллинеарных векторов пропорциональны.  

 

3. Уравнение прямой, проходящей через две данные точки 

 Пусть через две данные точки ),,( 1111 zyxM  и  ),,( 2222 zyxM  требуется 

провести прямую. Возьмем на этой прямой произвольную точку ),,( zyxM  и 

рассмотрим векторы  1111 ,, zzyyxxMM   и 

 12121221 ,, zzyyxxMM   (рис. 2.23). Эти векторы коллинеарны (лежат на 

одной прямой), поэтому их соответствующие координаты пропорциональны: 

12
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zz
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












.             (2.17) 

Полученное уравнение называется уравнением прямой в пространстве, 

проходящей через две данные точки. 

 

Рис. 2.23 Уравнение прямой в пространстве, проходящей через две 

данные точки 

 y  O 

   z 

),,( 2222 zyxM  

),,( zyxM  

),,( 1111 zyxM  

 x 



Заметим, что данные уравнения можно рассматривать также и как 

канонические уравнения прямой с начальной точкой ),,( 1111 zyxM  и 

направляющим вектором прямой  12121221 ,, zzyyxxMMs 


. 

 

2.14 Угол между двумя прямыми в пространстве 

Пусть две прямые заданы в пространстве параметрическими или 

каноническими уравнениями с направляющими векторами  1111 ,, pnms   и 

 2222 ,, pnms  . 

Очевидно, угол   между прямыми будет равен углу между их 

направляющими векторами, поэтому 
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 Условие перпендикулярности прямых совпадает с условием 

перпедикулярности направляющих векторов этих прямых   

0212121  ppnnmm , 

а условием параллельности прямых является условие параллельности их 

направляющих векторов, что выражаетcя пропорциональностью их 

соответствующих координат: 

2

1

2

1

2

1

p

p

n

n

m

m
 . 

 

2.15 Угол между прямой в пространстве и плоскостью 

 Если через данную прямую провести плоскость, перпендикулярную к 

данной плоскости, то пересечение плоскостей даст прямую, которая называется 

проекцией данной прямой на данную плоскость (рис. 3.13). Угол   между 

прямой и ее проекцией на данную плоскость называется углом между прямой и 

плоскостью. Всегда можно считать 20   . 



 Если N  – нормальный вектор плоскости, а s


 – направляющий вектор 

прямой (рис. 2.24), то 

0),cos(
2

cossin 











Ns


 . 

Модуль взят потому, что угол между векторами N  и s


 может оказаться тупым. 

 

Рис. 2.24 Угол между прямой и плоскостью 

 

Пусть заданы общее уравнение плоскости  

0 DCzByAx ,   CBAN ,,  

и канонические уравнения прямой 
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 Если плоскость и прямая параллельны, то 0sin  , и условие 

параллельности прямой и плоскости выражается равенством 

0 CpBnAm . 

 Если N s , то прямая перпендикулярна к плоскости, и условия 

перпендикулярности прямой и плоскости выражаются равенствами 

p

C

n

B

m

A
 . 

 

3. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ 

ДЕЙСТВИТЕЛЬНОЙ ПЕРЕМЕННОЙ 

 

3.1 Логические символы 

В математике для сокращения записи некоторые часто используемые 

словесные выражения заменяют логическими символами. 

Символом   заменяют выражение «для каждого» или «для любого», или 

«для всех». Запись :x ПР означает, что «для всех x имеет место предложение 

ПР».  

Пример. Запись  

    03: 2  xx  

можно прочитать так: «для всех x сумма 32 x  больше нуля». 

Символом  заменяют выражение «существует» или «найдется». Запись 

:x ПР означает, что «существует x, для которого имеет место предложение 

ПР». 

Пример. Запись  

    9: 2  xx  

можно прочитать так: «существует x, квадрат которого равен девяти» (таких 

значений  x в данном случае два: 3 и –3). 



Символом   заменяют выражение «следует» или «влечет за собой». 

Запись ПР1ПР2 означает, что «из предложения  ПР1 следует предложение 

ПР2».  

Пример. Запись 

    
220 baba   

можно прочитать так: «из неравенства  0 ba  следует неравенство 
22 ba  ». 

Символом    заменяют выражение «равносильно» или «эквивалентно», 

или «необходимо и достаточно», или «тогда и только тогда». Запись        

ПР1  ПР2 означает, что «предложения ПР1 и ПР2 равносильны», т.е. из ПР1 

следует ПР2 и обратно, из ПР2 следует ПР1. 

Пример. Запись  

    
33 baba   

можно прочитать так: «неравенство ba   и неравенство 
33 ba  равносильны», 

т.е. следуют друг из друга: 

    
33 baba    и  baba  33

. 

Символом  :=  заменяют выражение «равно по определению». 

Пример. Запись  

    aaa :2
 

можно прочитать так: «квадрат величины a равен по определению 

произведению aa  ». 

Символом    заменяют выражение «и». Запись ПР1ПР2 означает, что 

предложения  ПР1 и ПР2  справедливы одновременно. 

Пример. Пусть ПР1 означает, что 3x , а ПР2 – что 4x : 

    ПР1   ;3:  x ПР2 4:  x . 

Оба предложения ПР1 и ПР2 справедливы одновременно для 4x : 

   ПР1ПР2 443  xxx . 



Символом    заменяют выражение «или». Запись ПР1ПР2 означает, 

что справедливо хотя бы одно из предложений ПР1, ПР2 (ПР1 или ПР2 или оба 

предложения ПР1 и ПР2).  

Пример. Пусть, как и в предыдущем примере:  

    ПР1   ;3:  x ПР2 4:  x . 

Тогда, если выполняется хотя бы одно из предложений ПР1, ПР2, то 3x : 

ПР1ПР2 343  xxx . 

 

3.2  Пределы и непрерывность 

 

Определение. Бесконечной числовой последовательностью 

называется бесконечный ряд чисел, каждому из которых присвоен 

определенный порядковый номер и которые расположены в порядке 

возрастания их номеров: 

 nn yyyyy     или   ,...,...,,, 321 . 

Числа ,...,...,,, 321 nyyyy  называются членами последовательности, а 

натуральное число n – номером члена последовательности.  

 Геометрически последовательность изображается на числовой прямой в 

виде последовательности точек, координаты которых равны соответствующим 

членам последовательности. 

 Задать последовательность означает задать закон, при помощи которого 

можно определить значение любого члена последовательности, зная его 

порядковый номер. 

 Обычно последовательность задается с помощью формулы для ее n-го 

(общего) члена ny .  

 Пример  

   
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
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
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1
,

2

1
,1

1

nn
yn

. 



Геометрическое изображение данной последовательности приведено на 

рис. 3.1. 

 

Рис. 3.1. Геометрическое изображение числовой последовательности  








n
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 Последовательность можно задать и с помощью некоторого правила или 

закона, сформулированного словесно. 

 Введем понятие предела числовой последовательности. 

 Определение. Число A называется пределом последовательности 

 ny , если для любого произвольно малого положительного числа ε существует 

такой номер  N , что для всех Nn   выполняется неравенство  Ayn . 

 С помощью логических символов это определение можно записать в виде 

      AyNnN n:)(0 . 

 Определение. Последовательность, имеющая предел, называется 

сходящейся, а последовательность, не имеющая предела, – расходящейся.  

 Если последовательность  ny  сходится и имеет своим пределом число A, 

то символически это записывается так: 




nAyAy nn
n

  при       или     lim . 

 Так как неравенства 

  AyAAy nn  

означают, что член ny  находится в ε-окрестности точки  A 

 ,AUyn  , 

то с геометрической точки зрения определение предела числовой 

последовательности можно сформулировать следующим образом. 



 Определение. Число A называется пределом последовательности 

 ny , если для любой произвольно малой ε-окрестности точки A существует 

такой номер  N , что все члены последовательности ny
 с номерами Nn   

находятся в этой ε-окрестности. 

 Из определения следует, что любая ε-окрестность точки A содержит 

бесконечное число членов последовательности, а вне этой ε-окрестности может 

находиться лишь конечное число членов последовательности, а именно  N . 

 С помощью логических символов это определение можно записать в виде 

      ,:)(0 AUyNnN n  . 

 Пример. Используя определение предела последовательности, докажем, 

что 

1
1

lim 
 n

n

n
. 

 Возьмем любое число 0 . Так как A = 1 и 

1

1

1

1
1

1
1










nnn

n
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, 

то для нахождения значений n, удовлетворяющих неравенству  Ayn , 

достаточно решить неравенство 
1

1

n
, откуда получаем .1

1



n  

Следовательно, в качестве N можно взять целую часть числа  1
1



, т.е. 









 1

1


N , 

где скобками    обозначена операция взятия целой части числа. Тогда 

неравенство 1ny  будет выполняться при всех Nn  . Таким образом, 

доказано, что 

1
1

lim 
 n

n

n
. 



 Например, при 3,0  получим 
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т.е. все члены последовательности, начиная с третьего  2n , находятся в 

окрестности точки 1A  радиусом 3,0  (рис. 3.2). 

         

Рис. 3.2. Предел последовательности 
1


n

n
yn   

 

3.3 Понятие функции и способы её задания 

 

 Определение. Переменная y называется функцией переменной x, если 

каждому значению переменной x из некоторой области ее изменения RX   по 

некоторому правилу или закону f ставится в соответствие одно определенное 

значение переменной y из некоторой области ее изменения RY  . 

 Обозначения:   xfy    или   xyy  . 

 Используют следующие названия: 

x – независимая переменная или аргумент; 

y – зависимая переменная или функция; 

X – область определения функции; 

Y – область значений функции. 

 Говорят еще, что функция  f  отображает множество X на множество Y. 

 Задать функцию f – значит указать, как по каждому данному значению 

аргумента x находить соответствующее ему значение функции  xf . 

Существуют пять основных способов задания функций: аналитический, 

табличный, графический, программный и словесный.  



 1) Аналитический способ – функция задается с помощью формул. При 

этом функция может быть задана явно, неявно и параметрически. 

 а) При явном задании функции зависимая переменная непосредственно 

выражается через независимую переменную. 

 Примеры  

 1) Формула 2xy   задает функцию, область определения которой – 

числовая прямая:   ,X , а область значений – полупрямая:   ,0Y . 

 2) Формула !ny   ставит в соответствие каждому натуральному числу n 

число ny  ...321 . Например, если 3n , то 6321!3 y .  

 Область определения функции – множество всех натуральных чисел N, а 

область значений – множество  ,...!,...,!3,!2,!1 n .  

 Функция !ny   называется факториалом, причем полагается 0!=1. 

 б) При неявном задании функции зависимая переменная не выражается 

непосредственно через независимую переменную. 

 Примеры  

 1) 05cossin  xyeyx .  2) 1 xy yexe . 

  в) При параметрическом задании функции и зависимая и 

независимая переменные являются, в свою очередь, некоторыми явно 

заданными функциями новой переменной, называемой параметром: 

   tyytxx     , , 

где  t – параметр, принимающий значения из некоторой области RT  . 

 Пример. Уравнения 

  








,sin

,cos

tRy

tRx
  20  t  

задают параметрически уравнение окружности радиусом R на плоскости  Oxy с 

центром в начале координат, так как 



   2222222222 sincossincos RttRtRtRyx  , 

т.е. 222 Ryx  . 

 2) Табличный способ – функция задается с помощью таблицы, в которой в 

определенном порядке выписываются значения аргумента и соответствующие 

им значения функции. 

 Пример 

x 0,1 0,2 0,3 0,5 0,7 1,0 

y 5,4 7,4 8,1 8,6 7,3 6,6 

 3) Графический способ – функция задается с помощью графика в 

некоторой системе координат на плоскости (рис. 3.3). 

 

 

Рис. 3.3.  Графическое задание функции  xfy   

 4) Программный способ – функция задается с помощью операторов 

некоторого языка программирования. 

 Пример. Функция  

    4/*3sin1*2  xxEXPABSy  

при написании программы будет обеспечивать вычисление значений 









 

4
3sin12 
xey x

. 

 5) Словесный способ – функция задается словесным описанием. 



 Пример. Каждому действительному числу x ставится в соответствие 

наибольшее целое число, не превосходящее x. Эта функция называется целой 

частью x и обозначается  x . 

 

3.4 Обратная функция 

 Пусть функция  xfy   имеет область определения X и область значений 

Y (рис. 3.4), т.е. каждому значению переменной Xx  по закону f ставится в 

соответствие одно определенное значение переменной Yy . 

 

 

Рис. 3.4.  Понятие обратной функции  yfx 1  

 Если же при этом каждому значению переменной Yy  по закону g 

можно поставить в соответствие одно определенное значение переменной  

Xx , то говорят, что задана обратная функция     yfxygx 1  или   , 

имеющая область определения Y  и область значений  X (рис. 2.2). Таким 

образом, областью определения обратной функции становится область 

значений исходной функции, а областью значений обратной функции – область 

определения исходной функции. 

 Очевидно, что для функции  yfx 1  обратной является  xfy  . 

Поэтому обе эти функции называются взаимно обратными.  

 Исходная функция  xfy   и ее обратная функция  yfx 1  выражают 

одну и ту же связь между переменными  x и  y, поэтому одна и та же кривая 

служит графиком и для исходной функции и для обратной функции. Однако 

если для исходной функции ось Ox является осью независимой переменной, а 



ось Oy – осью зависимой переменной, то для обратной функции, наоборот, ось 

Ox является осью зависимой переменной, а ось Oy – осью независимой 

переменной. 

 Если же вернуться к обычному обозначению независимой переменной 

через x, а зависимой переменной – через y, то обратную функцию можно 

записать в виде  xfy 1 . График обратной функции  xfy 1  симметричен 

графику исходной функции  xfy   относительно биссектрисы I и III 

координатных углов (квадрантов) – прямой xy  . 

  

Рис. 3.5.  Графики исходной функции xey   и обратной функции xy ln  

 Пример 

Исходная функция:     ,0  ;,  ; YXey x . 

Обратная функция:     ,  ;,0  ;ln YXxy . 

Графики исходной функции xey   и обратной функции xy ln  

приведены на рис. 3.5. 

 

3.5 Сложная функция 

 

Определение. Если в области  X  определена функция  xy   с 

областью значений  Y , а в области  Y  определена функция  yfz  , то функция 

от функции   xfz    называется сложной функцией от  x, а переменная y – 

промежуточной переменной сложной функции (рис. 3.6). 



 

 

 

Рис. 3.6. Понятие сложной функции   xfz   

Пример. Функция 
2xez  –  сложная функция. Здесь: 

      ,0  ;,  ;2 YXxxy  . 

      ,1       ;,0   ; ZYeyfz y . 

 Таким образом, для сложной функции 
2xez  область определения 

  ,X , а область значений   ,1Z . 

 Функция от функции может браться несколько раз. 

 Пример. В сложной функции 
)lncos(3 xey   функция от функции берется 

три раза. 

 

3.6 Монотонность, ограниченность, четность и периодичность функций 

 

 Определение. Функция  xfy   называется возрастающей в области 

X, если для любых XxXx  21  и , таких, что 12 xx  , выполняется 

неравенство    12 xfxf  , и убывающей, если выполняется неравенство 

   12 xfxf  . 

 Функция  xfy   называется неубывающей в области X, если для любых 

XxXx  21  и , таких, что 12 xx  , выполняется неравенство    12 xfxf  , и 

невозрастающей, если выполняется неравенство    12 xfxf  . 



 Возрастающие, убывающие, невозрастающие и неубывающие функции 

объединяются общим названием – монотонные функции. Возрастающие и 

убывающие функции называются также строго монотонными. 

 Примеры 

 1) Функция 2xy   монотонно убывает на промежутке  0,  и 

монотонно возрастает на промежутке  ,0  (рис. 3.7). 

 2) Функция 3xy   монотонно возрастает на всей числовой оси, т.е. на 

промежутке   ,   (рис. 3.8).  

 

 

 Рис. 3.7. График функции 2xy         Рис. 3.8. График функции 3xy    

 Определение. Функция  xfy   называется ограниченной сверху 

(снизу) в области  X, если существует такое число M (m), что для любого Xx  

выполняется неравенство     mxfMxf      . 

 Функция  xfy  , ограниченная и сверху, и снизу в области X, 

называется ограниченной в этой области. 

 Условие ограниченности функции можно сформулировать и так: функция 

 xfy   называется ограниченной в области X, если существует такое 

положительное число M, что для любого Xx  выполняется неравенство 

  Mxf  . 

 С помощью логических символов условие ограниченности функции 

 xfy   можно записать в виде 

     MxfXxM  :0 , 



а условие неограниченности – в виде 

     MxfXxM  :0 . 

 Примеры 

 1) Функция xy cos  ограничена на всей числовой прямой, так как 

1cos x  при любом   ,x . 

 2) Функция xy /1  не является ограниченной сверху на интервале  1,0 , 

так как не существует числа M такого, что для любого  1,0x  выполнялось бы 

неравенство   Mx /1 . 

 Определение. Функция  xfy   называется четной в области X, 

если для любого Xx  выполняется равенство    xfxf  . 

 График четной функции симметричен относительно оси Oy. 

Пример. Функция 2xy   является четной на всей числовой оси, так как 

          ,   для   22
xxfxxxf . 

График функции 2xy   симметричен относительно оси Oy (см. рис. 5.5). 

 Определение. Функция  xfy   называется нечетной в области X, 

если для любого Xx  выполняется равенство    xfxf  . 

 График нечетной функции симметричен относительно начала координат. 

Пример. 

 Функция 3xy   является нечетной на всей числовой оси, так как 

          ,   для   33
xxfxxxf .  

График функции 3xy   симметричен относительно начала координат (см. 

рис. 5.6). 

 Определение. Функция  xfy   называется  периодической в области 

X, если существует такое постоянное число 0T , что для любого Xx  

выполняется равенство    xfTxf  . 



  Минимальное из всевозможных чисел T  называется периодом функции 

 xfy  . 

Пример. Из тригонометрии известно, что функции xy sin  и xy cos  

являются периодическими функциями с периодом 2T , а функции tgxy   и 

ctgxy  –  периодическими с периодом  T  в области  . ,X  

 

3.7 Элементарные функции 

 Определение. Основными элементарными функциями называются 

следующие функции: 

1) Постоянная (константа) Cy  , где  C – действительное число. 

2) Степенная функция 
xy  , где   – действительное число.  

3) Показательная функция  1 ;0   aaay x
. 

4) Логарифмическая функция  1 ;0  log  aaxy a . 

5) Тригонометрические функции: ctgxytgxyxyxy   , ,cos ,sin . 

6) Обратные тригонометрические функции: xyxy arccos ,arcsin  , 

arcctgxyarctgxy   , . 

Определение. Элементарными функциями называются функции, 

получаемые из основных элементарных функций с помощью конечного числа 

арифметических действий и конечного числа операций взятия функции от 

функции. 

Примеры 

1)  xy 4cos1ln  . 2) 













2

2
32

x

x
tgy x .     3) 

6

2
2 




xx

xe
y

x

. 

Рассмотрим некоторые важные частные случаи элементарных функций. 

Определение. Целой рациональной функцией или многочленом 

называется функция вида 



  nn
nn

n axaxaxaxPy  


1
1

10 ... ,        ,x , 

где  n – натуральное число, называемое степенью многочлена; nn aaaa ,110 ,...,,   – 

действительные числа, называемые коэффициентами многочлена. 

 Постоянную функцию C можно рассматривать как многочлен нулевой 

степени   CaxaxPy  0
0

00 . 

 Многочлен первой степени   101 axaxPy   называют линейной функцией. 

 Многочлен второй степени    21
2

02 axaxaxPy   принято называть 

квадратным трехчленом. 

Примеры многочленов: 

1)   173 2
2  xxxPy .  2)   75 23

3  xxxPy .  3)   10
10 4xxPy  . 

Определение. Дробно-рациональной функцией или рациональной 

дробью  называется отношение двух многочленов 

 
 
 

mm
mm

nn
nn

m

n

bxbxbxb

axaxaxa

xQ

xP
xR












1
1

10

1
1

10

...

...
. 

Рациональная дробь называется правильной, если степень многочлена в 

числителе меньше степени многочлена в знаменателе  mn  ; в противном 

случае  mn   рациональная дробь называется неправильной. 

Дробно-рациональная функция  xR  определена для всех значений  x, за 

исключением тех, при которых знаменатель  xQm  обращается в нуль. 

 Примеры рациональных дробей: 

 1) Правильная рациональная дробь 

   
xxx

xx
xR

238

75
24

2




 ;   mnmn   ;4 ;2 . 

 2) Неправильная рациональная дробь 

   
2

153






x

xx
xR ;   mnmn   ;1 ;3 . 



 Целая рациональная функция является частным случаем дробно-

рациональной функции, когда знаменатель последней – постоянная величина. 

 Совокупность целых рациональных и дробно-рациональных функций 

образует класс рациональных функций. 

 Определение. Иррациональной функцией называется функция, 

получаемая из рациональных функций и из степенных функций с 

рациональными нецелыми показателями с помощью конечного числа 

арифметических действий и конечного числа операций взятия функции от 

функции. 

Примеры иррациональных функций: 

1) 3 1 xy . 2) 5
52

xx

x
y




 .  3) 23  xxy . 

 

3.8 Предел функции 

 

 Пусть функция  xfy   определена в некоторой области  X  и Xx 0 . 

 Рассмотрим понятие предела функции в точке.  

 Определение. Число A называется пределом функции  xf  при 

,0xx  если для любого произвольно малого положительного числа   

существует такое зависящее от него положительное число  , что для всех 

Xx , отличных от 0x  и удовлетворяющих неравенству  0xx , 

выполняется неравенство    Axf . 

 Тот факт, что число A есть предел функции  xf  при 0xx , принято 

записывать следующим образом: 

    Axf
xx


 0

lim        или       0( )f x A где x x  . 

 Данное определение называют определением «на языке   ».      



 Символическая запись определения предела функции  xf  при 0xx  

имеет вид: 

            AxfxxxxXx :,,00 00 . 

 Отметим, что условия  00 , xxxx  можно записать в виде 

 00 xx . Так как 

      ,    и   0 , ,00 AUyAxfXxUxxxXx   , 

то символическая запись определения предела примет вид 

            ,:,00 0 AUyXxUx   . 

 Геометрический смысл предела функции  xf  при 0xx  заключается в 

следующем: для любого произвольно малого положительного числа   

существует такое зависящее от него положительное число  , что для всех x  

из проколотой  -окрестности точки 0x
 график функции   xf  лежит в полосе 

шириной 2 , ограниченной прямыми   AyAy   и   (рис. 5.8).  

 

 

 

Рис. 3.9. Геометрический смысл предела функции  xf  при 0xx  

 Иными словами, значения функции y будут заключены в произвольной  

 -окрестности точки A при условии, что значения аргумента x взяты в 

проколотой  -окрестности точки 0x . 

 Заметим, что на рис. 3.9 показано, очевидно, наибольшее из 

всевозможных чисел  , найденное по заданному числу  . Ясно и то, что в 



данном случае при увеличении или уменьшении числа   число   также 

соответственно увеличивается или уменьшается, т.е., вообще говоря,    . 

 Замечание. Для существования предела функции  xf  при 0xx  не 

требуется, чтобы функция была определена в точке 0xx  . 

Примеры 

1) Докажем, что  

  532lim
1




x
x

. 

Зададим произвольное положительное число  . Для того чтобы при 

5A  выполнялось неравенство 

   532x , 

необходимо выполнение неравенства 

2
1   или   22


  xx . 

Если положить 
2


  , то при любом   для всех значений x, 

удовлетворяющих неравенству 1x , будет выполняться неравенство 

   532x . А это и означает, что число 5 есть предел функции 

  1  при  32  xxxf . 

 2) Докажем, что  

0
0

lim xx
xx




. 

Зададим произвольное положительное число  . Для того чтобы при 

0xA   выполнялось неравенство 

 0xx , 

необходимо выполнение неравенства 

 0xx , 



что всегда возможно, если выбрать   . А это и означает, что 0x  есть предел 

функции   0  при  xxxxf  . 

Кроме рассмотренного понятия предела функции в точке 0x  (при  

0xx  ), существует также понятие предела функции при стремлении 

аргумента к бесконечности. 

Определение. Число A называется пределом функции  xf  при 

x   x , если для любого произвольно малого положительного числа 

  существует такое зависящее от него положительное (отрицательное) число 

M, что для всех Xx  и  0 0  MxMx  выполняется неравенство 

   Axf . 

 Тот факт, что число A есть предел функции  xf  при x , принято 

записывать следующим образом: 

   Axf
x




lim     или         при   xAxf    или      Af  . 

 Если же число A есть предел функции  xf  при x , то пишут так: 

   Axf
x




lim     или         при   xAxf    или      Af  . 

 Данное определение, как и предыдущее, сформулировано «на языке   ».      

Символическая запись определения предела функции  xf  при x  

имеет вид: 

            AxfMxXxM :0,00 . 

 Символическая запись определения предела функции  xf  при x  

имеет вид: 

            AxfMxXxM :0,00 . 



 Геометрический смысл предела функции  xf  при x  заключается в 

следующем: для любого произвольно малого положительного числа   

существует такое зависящее от него положительное число M , что для всех x , 

больших M, график функции   xf  лежит в полосе шириной 2 , ограниченной 

прямыми   AyAy   и   (рис. 3.10). 

 Иными словами, значения функции y будут заключены в произвольной  -

окрестности точки A при условии, что значения аргумента  x взяты из интервала 

 ,M . 

 Геометрический смысл  предела функции  xf  при x  заключается в 

следующем: для любого произвольно малого положительного числа   

существует такое зависящее от него отрицательное число M , что для всех x , 

меньших M, график функции   xf  лежит в полосе шириной 2 , ограниченной 

прямыми   AyAy   и   (рис. 3.11). 

 Иными словами, значения функции y будут заключены в произвольной    

 -окрестности точки A при условии, что значения аргумента x взяты из 

интервала  M, . 

      

 

Рис. 3.10. Геометрический смысл        Рис. 3.11. Геометрический смысл 

    предела функции  xf  при x  предела функции  xf  при x      

                 

Примеры  

1) Докажем, что 

0
1

lim 
 xx

. 



Зададим произвольное положительное число  . Для того чтобы при 

0A  выполнялось неравенство 

 0
1

x
, 

необходимо выполнение неравенства 




11
 x

x
, 

которое можно записать в виде 

1 1
.x и x

 
    

Если положить 


1
M , то при любом   для всех значений x, 

удовлетворяющих неравенствам  Mx   и Mx  , будет выполняться 

неравенство  0
1

x
. А это и означает, что число 0 есть предел функции 

    
1

x
xf  как при x , так и при x . 

 2) Докажем, что предел постоянной равен самой постоянной: 

CC
x




lim , 

где C – некоторая постоянная величина. 

Зададим произвольное положительное число  . При   Cxf   и CA  

неравенство 

   0CCAxf , 

выполняется для всех значений   ,x , в том числе и для Mx  , где M – 

любое положительное число.  

 А это и означает, что число C есть предел функции     Cxf  при 

x .  

 

 



3.9 Основные теоремы о пределах функций 

(свойства пределов функций) 

 Сформулируем основные теоремы о пределах функций. Для 

определенности рассмотрение проведем для случая  x . Для остальных 

случаев всё аналогично. 

Теорема 3.1. Предел алгебраической суммы функций равен 

алгебраической сумме пределов этих функций: 

        xgxfxgxf
xxx 

 limlimlim . 

 Замечание. Теорема легко распространяется на случай любого конечного 

числа слагаемых. 

Теорема 3.2. Предел произведения функций равен произведению 

пределов этих функций: 

        xgxfxgxf
xxx 
 limlimlim . 

 Замечание. Теорема легко распространяется на случай любого конечного 

числа сомножителей. 

 Следствие. Постоянный множитель можно выносить за знак предела: 

      xfCxfCxCf
xxxx 

 limlimlimlim , 

так как выше установлено, что CC
x




lim . 

Теорема 3.3. Предел частного функций равен частному пределов этих 

функций, если предел знаменателя отличен от нуля: 

 
 

 

 
  0lim   ;

lim

lim
lim 








xg

xg

xf

xg

xf

x

x

x

x
. 

 

3.10 Непрерывность функции в точке 

 Введем понятия приращения аргумента и приращения функции для 

функции  xfy   (рис. 3.12). 



     

Рис. 3.12. Приращение аргумента и приращение функции  xfy   

 

 Определение. Разность 0xx   (независимо от ее знака) называется 

приращением аргумента в точке 0x  и обозначается  

0xxx  . 

 Разность    0xfxf   соответствующих значений функции y  называется 

приращением функции и обозначается        000 xfxxfxfxfy  . 

Приведем три эквивалентных определения непрерывности функции в точке. 

 Определения. Функция  xfy  , определенная в точке 0x  и 

некоторой ее окрестности, называется непрерывной в точке 0x , если: 

 1) предел функции при 0xx  существует и равен значению функции в 

точке 0x : 

   0
0

lim xfxf
xx




; 

 2) для любого произвольно малого положительного числа   существует 

такое зависящее от него положительное число  , что для всех x , 

удовлетворяющих неравенству  0xx , выполняется неравенство 

     0xfxf : 

              000 :,00 xfxfxxxUx ; 

 3) бесконечно малому приращению аргумента в точке 0x  соответствует 

бесконечно малое приращение функции: 

0lim
0




y
x

     или     0  при  0  xy . 



Геометрический смысл непрерывности функции  xf  в точке 0x  (рис. 3.13).  

 

     

Рис. 3.13. Геометрический смысл непрерывности функции  xf  в точке 0x  

 Из определения непрерывности функции в точке следует свойство:  

для непрерывных функций знаки функции и предела можно менять местами: 

    










xfxf

xxxx 00

limlim , 

так как ранее было показано, что 0
0

lim xx
xx




. 

 Данное свойство широко используется на практике для нахождения 

пределов непрерывных функций. 

 Пример. Вычислить 

1

13
lim

4

2

2 



 x

xx

x
. 

Под знаком предела стоит функция  
1

13
4

2






x

xx
xf , которая определена и 

непрерывна для   ,x , в том числе и в точке 20 x . Поэтому, меняя 

знаки предела и функции, получим: 
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3.11 Производная функции 

Пусть функция )(xfy   определена и непрерывна для Xx . 



Определение. Производной функции )(xf  в точке x называется 

предел, если он существует, отношения приращения функции y  в этой точке 

к приращению аргумента x  при 0x . 

Производная функции )(xfy   в точке x  обозначается символами: 

dx

dy

dx

df
yxyffxf xx ,,),(,,),(  . 

          Итак, по определению 

x

xfxxf

x

y
xf

xx 











)()(
limlim)(

00
. 

           Если для некоторого значения  выполняется условие  






 x

y

x 0
lim  или 





 x

y

x 0
lim , 

то говорят, что в точке x  функция имеет бесконечную производную. 

Теорема 3.4. Функция )(xfy  , имеющая производную в точке x , 

непрерывна в этой точке. 

Замечание. Обратное утверждение неверно. Функция может быть 

непрерывной в точке, но не иметь производной в этой точке. 

Пример. Функция xy   непрерывна в точке 0x  по третьему 

определению непрерывности функции: 

0)(limlim
00




xy
xx

 для 0x , 

0)(limlim
00




xy
xx

   для 0x , 

но не имеет в точке 0x  производной. 

Если функция )(xf  имеет конечную производную Xx , то 

производную )(xf   можно рассматривать как функцию от x , также 

определённую для  Xx . 

Из определения производной вытекает и способ её вычисления. 



Пример. Найдём производную функции 
2xy  . 

Для любого x  из области определения ),( X  приращение функции 

222 )(2)()()( xxxxxxxfxxfy  .  

          Пользуясь определением производной и считая x  фиксированным, 

получим 

xxx
x

xxx

x

y
xf

xxx
2)2(lim

)(2
limlim)(

0

2

00













.        

                Таким образом, производная xx 2)( 2   определена, также как и 

исходная функция, в области  ),( X . Например, значение производной в 

точке 3x  равно 632)3( f . 

 

3.12 Геометрический смысл производной 

 

Зададим на графике функции )(xfy   точки ),( yxM  и ),( yyxxP    и 

проведём через них секущую MP (рис. 3.14). Угол между секущей и осью Ox   

обозначим через  . Из MPK   найдём  
x

y
tg




 . 

 

Рис. 3.14. Геометрический смысл производной )(xf    

Устремим точку P вдоль кривой к точке М или, что то же самое, 

устремим 0x . При этом секущая МР будет изменять своё положение и 

стремиться к некоторому предельному положению (если оно существует) – 

прямой МТ, которую называют касательной к графику функции в точке 



),( yxM . Обозначим угол наклона касательной к графику функции )(xfy   в 

точке ),( yxM  к оси Ox  через  . Определим угловой коэффициент касательной 

  )(limlimlim
000

xf
x

y
tgtgtgk

xxx








 . 

Тем самым устанавливается геометрический смысл производной: 

производная функции )(xfy   в точке x  равна тангенсу угла наклона 

(угловому коэффициенту) касательной к графику функции )(xfy   в точке 

),( yxM  к оси Ox  . 

Используя геометрический смысл производной, легко записать уравнение 

касательной к графику функции )(xfy   в точке ))(,( 00 xfxM : 

))(()( 000 xxxfxfy   

и уравнение нормали в этой же точке: 

)))((/1()( 000 xxxfxfy  , 

так как произведение угловых коэффициентов двух взаимно перпендикулярных 

прямых равно, как известно, –1. 

 

3.13 Механический смысл производной 

 

Пусть материальная точка движется неравномерно вдоль некоторой 

прямой по закону )(tfs   , где t – время, а s – путь, проходимый точкой за 

время t. За промежуток времени t  материальная точка проходит путь         

)()( tfttfs  . Средняя скорость срv  за промежуток времени t  

определяется, как известно из физики, соотношением пройденного пути ко 

времени:                                                                

t

s
vср




 . 



Скорость точки v в момент времени t или мгновенная скорость 

определяется как предел средней скорости срv  при 0t : 

)(limlim
00

ts
t

s
vv

t
ср

t





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
. 

Тем самым устанавливается механический смысл производной: скорость 

неравномерного движения в каждый данный момент времени равна 

производной от пути по времени. 

 

3.14 Основные правила нахождения производных 

 

Пусть функции  )( и )( xvxu непрерывны и имеют производные для Xx  

и C – постоянная. 

Правило 1. Постоянный множитель выносится за знак производной 

uCCu )( . 

Правило 2. Производная суммы функций 

vuvu  )( . 

Правило 3. Производная произведения функций 

vuvuuv )( . 

Правило 4. Производная частного функций ( ) 

2v

vuvu

v

u 












. 

 

3.15 Производная сложной и обратной функций 

 

Теорема 3.5. Производная сложной функции равна произведению 

производной данной функции по промежуточной переменной на производную 

промежуточной переменной по независимой переменной: 



)]([ xuyy  ;  xux uyy   

Теорема 3.6 Если функция )(xfy   строго монотонна и непрерывна в 

некоторой области Х и имеет в точке Xx  производную 0)(  xf , то 

обратная функция )(ygx   также имеет в соответствующей точке Yy  

производную, равную 

)(

1
)(

xf
yg


 . 

 

3.16 Таблица производных основных элементарных функций 

 

Пусть функция )(xuu   имеет производную в некоторой точке x и C – 

постоянная. Тогда справедливы следующие формулы: 

1  0)( C .      9   u
u

tgu 
2cos

1
)( .  

2  1)( x .      10  u
u

ctgu 
2sin

1
)( .   

3  unuu nn  1)( .    11  u
u

u 



21

1
)(arcsin .     

4  u
u

u 
2

1
)( .    12  u

u
u 




21

1
)(arccos .  

5  uaaa uu  ln)( .    13  u
u

arctgu 



21

1
)( . 

6  uee uu )( .     14  u
u

arcctgu 



21

1
)( . 

7  u
au

ua


ln

1
)(log .    15  uuu  cos)(sin . 

8  u
u

u 
1

)(ln .     16  uuu  sin)(cos . 



Для составления таблицы производных основных элементарных функций 

использованы определение производной, основные правила нахождения 

производных и теоремы 3.5 и 3.6 о производных сложной и обратной функций. 

Формулы, приведённые в таблице, а также основные правила нахождения 

производных и теорема о производной сложной функции являются основными 

формулами дифференциального исчисления. На основе этих формул можно 

сделать важный вывод: производная элементарной функции есть также 

элементарная функция. 

Пример. Найти производную функции 4ln sin2  xexxy . 

 )4()()ln()4ln( sin2sin2 xx exxexxy  

xexxxxexxxx xx cosln2)4()(sin)(lnln)( sinsin22  . 

 

3.17 Условия возрастания и убывания функции 

  

 Достаточный признак монотонности функции. Если функция )(xfy   

в каждой точке интервала ),( ba  имеет положительную (отрицательную) 

производную, то на этом интервала функция возрастает (убывает). 

 Теорема имеет простой геометрический смысл:  

касательная к графику возрастающей функции в любой точке графика 

наклонена к оси Ox  под острым углом   )2/0(   , так как 0)(  tgxf , а 

касательная к графику убывающей функции наклонена к оси Ox  под тупым 

углом   )2/(    , так как 0)(  tgxf  (рис. 3.15). 

 

Рис. 3.15. Геометрический смысл достаточного признака монотонности функции 



 Пример. Определить интервалы монотонности функции xxy 33  . 

 Производная функции равна 33 2  xy . 

1. Функция возрастает для всех значений x, при которых 0y . Решая 

неравенство 033 2 x , находим 1x  или 1x . Таким образом, функция 

возрастает в интервалах: ),1()1,(  . 

2. Функция убывает для всех значений x, при которых 0y . Решая 

неравенство 033 2 x , находим 12 x  или 11  x . Таким образом, функция 

убывает в интервале )1;1( . 

 

3.18 Точки экстремума функции 

 

Определение. Точка 0x  называется точкой строгого локального 

максимума (минимума) функции )(xf , если для ),( 0 xUx


  выполняется 

неравенство )()( 0xfxf   ( )()( 0xfxf  ). 

 Локальный максимум (max) и локальный минимум (min) объединяются 

общим названием локальный экстремум (рис. 3.16).  

 

 

 

Рис. 3.16. Локальные экстремумы функции 

 Очевидно, что в области определения функция может иметь несколько 

локальных максимумов и несколько локальных минимумов, причём может 



случиться и так, что какой-то локальный максимум окажется меньше какого-то 

локального минимума. 

 Необходимое условие локального экстремума. В точке локального 

экстремума производная )(xf   равна нулю или не существует. 

 Определение. Точки, в которых производная )(xf   равна нулю или не 

существует, называются критическими точками или точками возможного 

экстремума. 

 Таким образом, экстремум функции, если он существует, может иметь 

место только в критической точке. Однако не во всякой критической точке, как 

было показано выше, функция имеет экстремум. Судить о том, будет данная 

критическая точка точкой экстремума функции )(xf  или нет, можно на 

основании достаточных условий экстремума. 

 Первое достаточное условие локального экстремума. Пусть функция 

)(xf  непрерывна в некоторой окрестности критической точки 0x  и имеет 

производную во всех точках этой окрестности, кроме, быть может, самой точки 

0x . Если при переходе слева направо через критическую точку 0x  производная 

)(xf   меняет знак с плюса на минус, то в точке 0x  функция )(xf  имеет 

максимум, а если с минуса на плюс, то минимум. 

 Аналогично рассматривается случай перемены знака )(xf   с «–» на «+». 

 Геометрический смысл первого достаточного условия локального 

экстремума ясен из рис. 3.16. 

 Второе достаточное условие локального экстремума. Пусть функция 

)(xf  имеет непрерывную вторую производную в окрестности критической 

точки 0x . Если 0)( 0  xf , то 0x  есть точка локального максимума функции )(xf , 

если же 0)( 0  xf , то 0x  есть точка локального минимума функции )(xf . 

 Замечание. Если 0)( 0  xf  и 0)( 0  xf , то вопрос о существовании 

локального экстремума функции )(xf  в точке 0x  остаётся открытым. Требуется 

дополнительное исследование. 



3.19 Схема исследования функции на экстремум 

 

 1.  Находим первую производную )(xf   и определяем критические точки 

как точки, в которых  0)(  xf  или )(xf   не существует. (Критические точки 

должны принадлежать области определения )(xf .) 

 2.  Каждую критическую точку исследуем с помощью первого или 

второго достаточного условия локального экстремума. 

 3.  Результаты исследования сводим в таблицу. 

 Пример. Найти точки локального экстремума функции xxxf 3)( 3  . 

1. Находим первую производную:  

)1)(1(333)3()( 23  xxxxxxf . 

 Решая уравнение  0)1)(1(3  xx , получаем две критические точки: 1x  

и 1x , принадлежащие области определения функции RX  . Точек, в которых 

)(xf   не существует, в данном случае нет. 

2. Исследуем найденные критические точки с помощью первого 

достаточного условия локального экстремума. Для этого определим знаки 

первой производной слева и справа от каждой критической точки. Из 

выражения для первой производной следует, что 

0)1(  ;0)11(  ;0)1(  xfxfxf . 

 На основании первого достаточного условия локального экстремума 

делаем заключение, что в точке 1x  функция xxxf 3)( 3   имеет локальный 

максимум, а в точке 1x  – локальный минимум. Далее находим: 

2)1(  ;2)1( minmax  fyfy . 

 3.  Результаты исследования сводим в таблицу. 

X  )1;(   -1 )1;1(      1  );1(   

)(xf                2              – 2           



)(xf            +     0         –       0          + 

    max    min  

 

3.20 Нахождение наибольшего и наименьшего значений  

непрерывной на отрезке функции 

 

 Пусть функция )(xfy   непрерывна на отрезке ],[ ba . Согласно второй 

теореме Вейерштрасса, такая функция достигает своего наибольшего и своего 

наименьшего значений либо внутри отрезка ],[ ba , либо на его границах. 

 Приведём схему нахождения наибольшего и наименьшего значений 

непрерывной на отрезке ],[ ba  функции )(xf : 

 1.  Находим все критические точки функции в интервале ),( ba  и вычисляем в 

них значения функции. 

 2.  Вычисляем значения функции на концах отрезка – в точках ax   и bx  .  

 3. Из всех вычисленных значений функции выбираем наибольшее и 

наименьшее. 

 Пример. Найти наибольшее и наименьшее значения функции 

xxxf 3)( 3   на отрезке ]0;3[ . 

 1.  Находим первую производную: 

)1)(1(333)3()( 23  xxxxxxf . 

 Решая уравнение  0)1)(1(3  xx , получаем две критические точки: 1x  

и 1x , принадлежащие области определения функции RX  . Точек, в которых 

)(xf   не существует, в данном случае нет. 

 Точка 1x  принадлежит заданному отрезку ]0;3[ . Значение функции 

2)1( f . Точка 1x  не принадлежит заданному отрезку ]0;3[ . Эту точку из 

дальнейшего рассмотрения исключаем. 



 2.  Вычисляем значения функции на концах отрезка в точках 3x  и 

0x : 18)3( f ; 0)0( f . 

 3.  Из всех вычисленных значений функции 

2)1( f , 18)3( f , 0)0( f  

выбираем наибольшее и наименьшее. В результате получаем, что функция 

xxxf 3)( 3   на отрезке ]0;3[  достигает своего наибольшего значения 

внутри отрезка – 2)1(  fyнаиб , а своего наименьшего значения на левом 

конце отрезка – 18)3(  fyнаим .  

 

3.21 Выпуклость и вогнутость графика функции 

 

 Пусть функция )(xfy   имеет производную в каждой точке интервала 

),( ba .Тогда существует касательная к графику функции )(xfy   в каждой его 

точке. 

 Определение. График функции )(xfy   называется выпуклым в 

интервале ),( ba , если он расположен ниже любой своей касательной на этом 

интервале. 

 График функции )(xfy   называется вогнутым в интервале ),( ba , если он 

расположен выше любой своей касательной на этом интервале (рис. 3.17). 

 

 

 

Рис. 3.17.  Выпуклость и вогнутость графика функции 



 Теорема 3.7. Если во всех точках интервала ),( ba  вторая производная 

0)(  xf , то график функции )(xf  на этом интервале выпуклый, а если 0)(  xf , 

то вогнутый. 

  

 

 

Рис. 3.18. Связь выпуклости и вогнутости графика функции со знаком второй 

производной 

 

3.22 Точки перегиба 

 

 Определение. Точка графика функции, отделяющая его выпуклую 

часть от вогнутой, называется точкой перегиба. 

 Очевидно, что в точке перегиба касательная пересекает график функции 

(рис. 3.19). 

 

 

Рис. 3.19. Точка перегиба 

 Необходимое условие перегиба. В точке перегиба с абсциссой 0x  вторая 

производная 0)(  xf , если она существует и непрерывна, или )(xf   не 

существует. 



 Но функция в точке перегиба может и не иметь второй производной. Так, 

например, для функции 3)( xxf   вторая производная )9/(2)( 3 5xxf   и не 

существует в точке 00 x . Однако 0)(  xf  для 0x  и 0)(  xf  для 0x , т.е. на 

основании теоремы 3.7 график данной функции вогнутый для 0x  и выпуклый 

для 0x , следовательно, имеет точку перегиба с абсциссой 00 x . 

 Следует отметить, что условие 0)(  xf  или )(xf   не существует, будучи 

необходимым для существования перегиба, не является достаточным. 

Например, для функции 4)( xxf   производная второго порядка 212)( xxf   

обращается в нуль при 00 x . Тем не менее, перегиба в точке с абсциссой 

00 x  нет, так как 0)(  xf  для Rx , т.е. график данной функции вогнутый 

на всей числовой оси. 

 Определение. Точки, в которых вторая производная )(xf   равна нулю 

или не существует, называются критическими точками или точками 

возможного перегиба. 

 Таким образом, перегиб графика функции, если он существует, может 

иметь место только в критической точке. Однако не во всякой критической 

точке, как было сказано выше, график функции имеет перегиб. Судить о том, 

будет данная критическая точка точкой перегиба функции )(xf  или нет, можно 

на основании достаточного условия перегиба.  

 Достаточное условие перегиба. Пусть функция )(xf  имеет вторую 

производную во всех точках некоторой окрестности критической точки 0x , 

кроме, быть может, самой точки 0x . Если при переходе через критическую 

точку 0x  вторая производная меняет знак, то точка с абсциссой 0x  есть точка 

перегиба. 

  

 

 



3.23 Схема исследования графика функции на перегиб 

 

1.  Находим вторую производную )(xf   и определяем критические точки 

как точки, в которых 0)(  xf  или )(xf   не существует. (Критические точки 

должны принадлежать области определения )(xf .) 

2. Каждую критическую точку исследуем с помощью достаточного 

условия перегиба. 

3.  Результаты исследования сводим в таблицу. 

Пример. Найти точки перегиба функции xxxf 3)( 3  . 

1. Находим вторую производную 

xxxxxf 6)33()3()( 23  . 

Решая уравнение 06 x , получаем критическую точку 00 x , 

принадлежащую области определения RX  . 

Точек, в которых )(xf   не существует, в данном случае нет. 

2. Исследуем найденную критическую точку с помощью достаточного 

условия перегиба. Для этого определим знаки второй производной слева и 

справа от критической точки. Из выражения для второй производной следует, 

что 0)(  xf  для 0x  и 0)(  xf  для 0x . На основании достаточного условия 

перегиба делаем заключение, что в точке с абсциссой 00 x  график функции 

xxxf 3)( 3   имеет перегиб. 

3.  Результаты исследования сводим в таблицу. 

  

X )0,(  0 ),0(   

)(xf             0   

)(xf    –  0 + 

  Перегиб  

 

 



3.24 Асимптоты графика функции 

 

 Определение. Прямая 0xx   называется вертикальной асимптотой 

графика функции )(xfy  , если хотя бы одно из предельных значений 

)(lim
00

xf
xx 

 или )(lim
00

xf
xx 

 равно   или  . 

        Для отыскания вертикальных асимптот графика функции )(xfy   надо 

найти те значения 0xx  , при которых функция обращается в бесконечность. 

Тогда вертикальная асимптота имеет уравнение 0xx  . 

 Вертикальная асимптота может быть правосторонней (график функции 

приближается к ней при 00  xx ) и левосторонней (график функции 

приближается к ней при 00  xx ). 

 Определение. Прямая bkxy   называется наклонной асимптотой 

графика функции )(xfy   при  x  ( x ), если функцию )(xf  можно 

представить в виде 

)()( xbkxxf  , 

где 0)( x  при x  ( x ). 

 Теорема 3.8. Для того, чтобы график функции )(xfy   имел при  

x  ( x ) наклонную асимптоту bkxy  , необходимо и достаточно, 

чтобы существовали конечные пределы: 

])([lim   ;
)(

lim

)()(

kxxfb
x

xf
k

x
x

x
x









. 

 В частном случае, если 0k , асимптота называется горизонтальной.  

 Наклонная асимптота, как и вертикальная, может быть правосторонней 

(график функции приближается к ней при x ) и левосторонней (график 

функции приближается к ней при x ). 

 

 



 Пример. Найти асимптоты графика функции  

x

xx
xf

32
)(

2 
 . 

1. Находим вертикальные асимптоты. Точка 00 x  является точкой 

разрыва 2-го рода с бесконечным скачком для данной функции, причем: 











 x
xxf

xx

3
2lim)(lim

0000

;  









 x
xxf

xx

3
2lim)(lim

0000

. 

Следовательно, 0x  (ось ординат) – вертикальная (двусторонняя) 

асимптота (рис. 3.20). 

2. Находим наклонные асимптоты: 

1
32

1lim
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




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
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. 

 Следовательно, прямая 2 xy   является наклонной асимптотой графика 

данной функции как при x , так и при x  (двусторонняя асимптота). 

 

Рис. 3.20. Вертикальная и наклонная асимптоты графика функции 

Из определений вертикальной и наклонной асимптот вытекает их 

геометрический смысл: прямая является асимптотой графика функции )(xfy  , 

если расстояние точки графика от прямой стремится к нулю при 

неограниченном удалении этой точки от начала координат. 

 



3.25 Общая схема исследования функции и построение ее графика 

 

 1. Найти область определения функции, точки разрыва и вертикальные 

асимптоты графика функции. 

 2. Выяснить симметрию графика функции (четность, нечетность, 

периодичность) и установить точки пересечения графика функции с осями 

координат. 

 3.  Найти наклонные асимптоты графика функции. 

 4.  Найти интервалы возрастания и убывания и экстремумы функции. 

 5.  Найти интервалы выпуклости и вогнутости и точки перегиба графика 

функции. 

 6.  Построить график функции по результатам исследования. 

 

  

4. ОСНОВЫ ИНТЕГРАЛЬНОГО ИСЧИСЛЕНИЯ 

  

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ 

 

 

4.1 Первообразная функция 

 

 В дифференциальном исчислении по заданной функции )(xf  

приходилось отыскивать ее производную )(xf  . 

 В интегральном исчислении рассматривается обратная задача: по 

заданной функции )(xf  восстановить такую функцию )(xF , для которой )(xf  

была бы производной, т.е. )()( xfxF  . 

 Определение. Функция )(xF  называется первообразной (функцией) 

для функции )(xf  на интервале  ba, , если для всех значений x из этого 

интервала выполняется равенство 

 

     baxxfxF ,   ,  . 



 Примеры  

 1) Функция   xxF sin  является первообразной для функции   xxf cos  

на всей числовой прямой, так как при любом значении   ,x  

выполняется равенство   xx cossin 


. 

 2) Функция   21 xxF   является первообразной для функции 

  21/ xxxf   на интервале  1;1 , так как в любой точке x этого интервала 

  22 1/1 xxx 


 . 

 Однако задача отыскания по данной функции )(xf  её первообразной 

решается неоднозначно. Действительно, если )(xF  – первообразная для )(xf , т.е. 

)()( xfxF  , то функция   CxF  , где C  – произвольная постоянная, также 

является первообразной для )(xf , так как     xfCxF 


  для любого числа C . 

 Например, для   xxf cos  первообразной является не только xsin , но и 

функция Cx sin , так как   xCx cossin 


 . 

 Возникает вопрос: если  xF1  и  xF2  – две первообразные для одной и 

той же функции )(xf , то всегда ли они отличаются друг от друга на 

постоянное слагаемое? Оказывается, что это действительно так. 

Теорема 4.1. Если  xF1  и  xF2  – две первообразные для функции )(xf  

на интервале  ba, , то     CxFxF  12 , где C  – некоторая постоянная. 

 Следствие. Все первообразные для функции )(xf  на интервале  ba,  

даются формулой   CxF  , где )(xF  – одна из первообразных для )(xf , а C  – 

произвольная постоянная. 

  

4.2 Неопределенный интеграл 

 Определение. Совокупность всех первообразных для функции )(xf  

на интервале  ba,  называется неопределенным интегралом от функции )(xf  

на этом интервале и обозначается символом 



       CxFdxxf . 

При этом функция )(xf  называется подынтегральной функцией, dxxf )(  – 

подынтегральным выражением, а переменная x – переменной интегрирования. 

 Нахождение первообразных для функции )(xf  называется 

интегрированием функции )(xf . 

 Отметим, что подынтегральное выражение является дифференциалом 

первообразной: 

     xdFdxxFdxxf )( . 

 Примеры 

 1)   Cxxdx sincos ,  так как    xCx cossin 


 . 

 2)   Cxxdx 22 ,         так как    xCx 22 


 . 

 Теорема 4.2. Если функция )(xf  непрерывна на интервале  ba, , то для 

неё существует первообразная на  ba, , а следовательно, и неопределенный 

интеграл. 

  

4.3 Основные свойства неопределенного интеграла 

 

Свойство 1. Производная от неопределенного интеграла равна 

подынтегральной функции; дифференциал от неопределенного интеграла равен 

подынтегральному выражению: 

      xfdxxf 


     и            dxxfdxxfd  . 

 Свойство 2. Неопределенный интеграл от дифференциала функции равен 

этой функции плюс произвольная постоянная: 

       CxFxdF . 

 Свойство 3. Постоянный множитель можно выносить за знак интеграла: 



       dxxfAdxxAf . 

 Свойство 4. Неопределенный интеграл от алгебраической суммы 

функций равен алгебраической сумме неопределенных интегралов от этих 

функций: 

             dxxgdxxfdxxgxf . 

 Отметим, что данное свойство справедливо для любого конечного числа 

слагаемых функций. 

 

4.4 Таблица основных интегралов 

 

 Приведем таблицу основных интегралов, которая непосредственно 

следует из определения интегрирования как операции, обратной 

дифференцированию, и таблицы производных. Справедливость всех формул 

легко проверить дифференцированием первообразных. Интегралы, 

содержащиеся в этой (или подобной ей) таблице, принято называть 

табличными. 

 Таблица интегралов в силу инвариантности формы дифференциала 

функции оказывается справедливой независимо от того, является ли 

переменная интегрирования u  независимой переменной )( xu   или любой её 

дифференцируемой функцией (  xuu  ). 

 1.   Cudu
u

duu 


 


       ;1     ,
1

1







. 

 2. Cu
u

du
 ln . 

 3.   CedueaaC
a

a
dua uu

u
u        ;1,0     ,

ln
. 

 4. Cuudu  cossin . 

 5. Cuudu  sincos . 



 6. Ctgu
u

du
 2cos

. 

 7. Cctgu
u

du
 2sin

. 

 8. )0(   ,
1

22



 aC

a

u
arctg

aua

du
. 

 9.  






C

au

au

aua

du
ln

2

1
22

. 

 10. C
a

u

ua

du



 arcsin

22
. 

 11. Cauu
au

du





22

22
ln . 

 12. Cauu
au

du





22

22
ln . 

  

 Отметим, что если операция дифференцирования элементарных функций 

снова приводит к элементарным функциям, то операция интегрирования уже 

может привести к неэлементарным функциям, т.е. функциям, которые не 

выражаются через конечное число арифметических операций и суперпозиций 

элементарных функций. 

  

4.5 Основные методы интегрирования 

 

 1 Непосредственное интегрирование. Вычисление интегралов с 

помощью непосредственного использования таблицы простейших интегралов и 

основных свойств неопределенных интегралов называется непосредственным 

интегрированием или методом разложения.  

 Пример  

  Cxxxdxdxxxdxdxxx  
655 sin46cos416cos4 . 



 2 Метод подстановки (замены переменной). Метод, позволяющий с 

помощью введения новой переменной интегрирования свести нахождение 

данного интеграла к нахождению табличного интеграла, называется методом 

подстановки или методом замены переменной. 

 Метод основан на следующей теореме. 

 Теорема 4.3. Пусть функция  )(tx   определена и дифференцируема на 

некотором множестве T  и пусть  X – множество значений этой функции, на 

котором определена функция  xf . Тогда, если на множестве X функция  xf  

имеет первообразную, то на множестве T справедлива формула замены 

переменной в неопределенном интеграле: 

    


dtttfdxxf
tx

)()(
)(




. 

 Пример  

  CxCtdtt
dtdx

xttx
dxx 




 

2/32/3 2
3

2

3

22  ;2
2 . 

 Иногда формулу замены переменной полезно применять справа налево: 

      
)(xt

dttfdxxxf



  . 

 Пример 

CeCedte
xdxdt

xt
xdxe xttx 




 

sinsin

cos

sin
cos . 

 3. Метод интегрирования по частям. Метод интегрирования по частям 

основан на использовании формулы дифференцирования произведения двух 

функций. 

 Теорема 4.4. Пусть функции  xu  и  xv  определены и дифференцируемы 

на некотором промежутке X и пусть функция    xvxu  имеет первообразную на 

этом промежутке. Тогда на промежутке X функция    xvxu   также имеет 

первообразную и справедлива формула интегрирования по частям в 

неопределенном интеграле: 



             dxxuxvxvxudxxvxu . 

  

 Замечание. Так как     dvdxxvdudxxu    , , то формулу интегрирования 

по частям в неопределенном интеграле можно записать в виде 

  vduuvudv . 

 Пример  

 

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 Cxxxxdxxx
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cossinsinsin
sincos ;

cos ;
cos  . 

 Замечание. Формула интегрирования по частям может применяться 

неоднократно. 

 Пример 
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 ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ 

 

4.6 Определение определенного интеграла 

 

 Пусть непрерывная функция )(xfy   определена на отрезке ],[ ba . 

Разобьем этот отрезок на n произвольных частей точками 

bxxxxxxa nii   ...... 1210 . 

 В каждом из полученных частичных отрезков ],[ 1 ii xx   выберем 

произвольную точку )( 1 iiii xx   . Через ix  обозначим разность 1 ii xx , 

которую условимся называть длиной частичного отрезка ],[ 1 ii xx  . 

 Образуем сумму 





n

i
iinnn xfxfxfxfS

1
2211 )()(...)()(  , 



которую назовем интегральной суммой для функции )(xf  на отрезке ],[ ba , 

соответствующей данному разбиению отрезка ],[ ba  на частичные отрезки и 

данному выбору промежуточных точек i . Геометрический смысл суммы nS  

очевиден: это сумма площадей прямоугольников с основаниями nxxx  ,..., , 21  

и высотами )(),...,(),( 21 nfff   (если 0)( xf  на отрезке ],[ ba ) (рис. 4.1). 

 

 

Рис. 4.1. Геометрический смысл интегральной суммы и определенного интеграла 

 Обозначим через  длину наибольшего частичного отрезка разбиения: 

}{max
1

i
ni

x


. 

 Определение. Определенным интегралом от функции )(xf  на отрезке 

],[ ba  называется предел интегральных сумм при стремлении к нулю длины 

наибольшего частичного отрезка разбиения, если этот предел существует и не 

зависит ни от способа разбиения отрезка ],[ ba  на частичные отрезки, ни от 

выбора в каждом из них точки ],[ 1 iii xx  : 





n

i
ii

b

a

xfdxxf
10 

)(lim)(  . 

 Функция )(xf  называется интегрируемой на отрезке ],[ ba . Числа a и b 

называются соответственно нижним и верхним пределами интегрирования, а 



отрезок ],[ ba  – отрезком интегрирования. Функция )(xf  называется также 

подынтегральной функцией, dxxf )(  – подынтегральным выражением, x – 

переменной интегрирования. 

 Из определения следует, что определенный интеграл представляет собой 

некоторое число и не зависит от обозначения переменной интегрирования: 

  
b

a

b

a

b

a

Cduufdttfdxxf )()()( . 

 Из определения определенного интеграла и рис. 4.1 следует 

геометрический смысл определенного интеграла: определенный интеграл от 

неотрицательной функции )(xf  по отрезку ],[ ba  численно равен площади 

криволинейной трапеции aABb, т.е. фигуры, ограниченной осью Ох, графиком 

функции )(xfy   и двумя прямыми ax   и bx  . 

 Теорема 4.5 существования определенного интеграла (без доказательства).  

 Если функция )(xf  непрерывна на отрезке ],[ ba , то для нее на этом 

отрезке существует определенный интеграл. 

 Замечание. Класс интегрируемых функций шире, чем класс непрерывных 

функций. Например, интегрируемыми являются также кусочно-непрерывные на 

отрезке ],[ ba  функции. 

 

4.7 Основные свойства определенного интеграла 

 

 Свойство 1. Постоянный множитель можно выносить за знак интеграла: 

 
b

a

b

a

dxxfAdxxAf )()( . 

 Свойство 2. Интеграл от алгебраической суммы функций равен 

алгебраической сумме интегралов от этих функций: 

 
b

a

b

a

b

a

dxxgdxxfdxxgxf )()()]()([ . 



 Свойство 3. Если отрезок интегрирования ],[ ba  разбить на два отрезка 

],[ ca  и ],[ bc , то интеграл по всему отрезку ],[ ba  будет равен сумме интегралов 

по отрезкам ],[ ca  и ],[ bc : 

 
b

c

c

a

b

a

dxxfdxxfdxxf )()()( . 

 Свойство 4. При перемене местами пределов интегрирования интеграл 

изменяет знак: 

 
a

b

b

a

dxxfdxxf )()( . 

  Свойство 5. Интеграл с одинаковыми пределами интегрирования равен 

нулю: 

0)( 
a

a

dxxf . 

 Свойство 6. Интеграл от постоянной величины равен этой постоянной, 

умноженной на длину отрезка интегрирования: 

)( abAAdx
b

a

 . 

 Свойство 7. Если m и M – наименьшее и наибольшее значения функции 

)(xf  на отрезке ],[ ba , то 

)()()( abMdxxfabm
b

a

  . 

Свойство 8. Абсолютная величина интеграла от данной функции не 

превышает интеграла от абсолютной величины этой же функции: 

 
b

a

b

a

dxxfdxxf )()( . 

 Свойство 9 (Теорема о среднем). Если функция )(xf  непрерывна на 

отрезке ],[ ba , то на этом отрезке существует такая точка с, что справедлива 

формула 







b

a

dxxf
ab

cf ,)(
1

)(  

называемая формулой среднего значения функции )(xf  на отрезке ],[ ba . 

  

4.8 Формула Ньютона – Лейбница 

 

 Выведем основную формулу интегрального исчисления – формулу 

Ньютона – Лейбница. Эта формула дает способ вычисления определенного 

интеграла через первообразную от подынтегральной функции, не прибегая к 

составлению интегральной суммы и к вычислению ее предела. 

 Теорема 4.6. Если )(xF  есть какая-либо первообразная от непрерывной на 

отрезке  ],[ ba  функции )(xf , то справедлива формула Ньютона – Лейбница: 

)()()()( aFbFxFdxxf
a

bb

a

 . 

 Пример 
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4.9 Замена переменной в определенном интеграле 

 

 Теорема 4.7. Пусть )(xf  – непрерывная функция на отрезке  ],[ ba . Тогда, 

если: 1) функция )(tx   дифференцируема на отрезке ],[   и )(t  

непрерывна на  ],[  ; 2) множеством значений функции )(tx   является 

отрезок  ],[ ba ;  3) a)(  и b)( , то справедлива формула замены 

переменной в определенном интеграле: 

 




 dtttfdxxf
b

a

)()]([)( . 

  



Пример 
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4.10 Интегрирование по частям в определенном интеграле 

 

 Теорема 4.8. Если функции )(xu и )(xv имеют непрерывные производные 

на отрезке ],[ ba , то справедлива формула интегрирования по частям в 

определенном интеграле: 

 
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a
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