
РОСЖЕЛДОР

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Ростовский государственный университет путей сообщения»

(ФГБОУ ВО РГУПС)

В.С. Якуничев

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

СТУДЕНТОВ ПО ДИСЦИПЛИНЕ

МДК.04.01 «Бэкенд-разработка (серверная часть)»

для специальности

09.02.09 Веб-разработка

Ростов-на-Дону

2025

СОДЕРЖАНИЕ

1 САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ .. 3

2 СТРУКТУРА ДИСЦИПЛИНЫ .. 4

3 РАСПРЕДЕЛЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО РАЗДЕЛАМ ... 7

4 КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ ДЛЯ САМОПРОВЕРКИ .. 9

5 ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ ...11

БИБЛИОГРАФИЧЕСКИЙ СПИСОК ...15

1 САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ

Самостоятельная работа студентов является важнейшей составной

частью образовательного процесса и способом активного, целенаправленного

приобретения студентом новых знаний и умений без непосредственного

участия преподавателя, но под его методическим руководством.

Изучение бэкенд-разработки требует глубокого понимания принципов

работы веб-серверов, протоколов передачи данных и алгоритмического

мышления. Самостоятельная работа позволяет закрепить навыки написания

программного кода и разобраться в архитектурных особенностях веб-

приложений.

Целями самостоятельной работы являются:

 систематизация и закрепление полученных теоретических знаний

и практических умений в области серверного программирования;

 углубление и расширение теоретических знаний по синтаксису

языка PHP и работе с протоколом HTTP;

 формирование умений работать с технической документацией и

стандартами (PSR);

 развитие навыков отладки программного кода и обеспечения

безопасности веб-ресурсов.

Организационные мероприятия, обеспечивающие нормальное

функционирование самостоятельной работы студента:

 Самостоятельная работа должна быть конкретной по своей

предметной направленности (решение прикладных задач).

 Самостоятельная работа должна сопровождаться эффективным,

непрерывным контролем и оценкой ее результатов (код-ревью, защита

лабораторных).

Виды самостоятельной работы по дисциплине «Бэкенд-разработка»:

 Работа с теоретическим материалом: изучение документации PHP

(php.net), стандартов HTTP, принципов MVC.

 Подготовка к практическим занятиям: настройка локального веб-

сервера (Denwer), написание базовых алгоритмов.

 Выполнение индивидуального задания (проекта): разработка

динамического веб-сайта с системой администрирования на файловой базе

данных (без использования SQL).

 Подготовка к зачету и экзамену: систематизация знаний по

функционированию серверной части веб-приложений.

2 СТРУКТУРА ДИСЦИПЛИНЫ

Введение. Дисциплина «Бэкенд-разработка (серверная часть)»

реализуется в учебном плане среднего профессионального образования по

специальности 09.02.09 «Веб-разработка».

Место дисциплины в структуре образовательной программы

Дисциплина является логическим продолжением курсов «Основы веб-

разработки и верстки» и «Фронтенд-разработка». Она закладывает фундамент

для последующего изучения работы с базами данных и проектирования

сложных информационных систем.

Дисциплина отнесена к профессиональному циклу Образовательной

программы, реализуется в рамках профессионального модуля ПМ.04

«Разработка веб-приложения на стороне сервера».

Дисциплина реализуется в пятом и шестом семестре.

Форма контроля – зачет, экзамен.

Целью освоения дисциплины «Бэкенд-разработка (серверная часть)»

является формирование у студентов системы знаний о принципах

функционирования веб-серверов и интерпретаторов, а также выработка

практических навыков разработки серверной логики веб-приложений с

использованием языка программирования PHP, обеспечивающих

взаимодействие с пользователем, обработку данных и генерацию

динамического контента.

Задачи освоения дисциплины:

Изучение архитектурных принципов: формирование глубокого

понимания модели взаимодействия «Клиент-Сервер», устройства протокола

HTTP/HTTPS, жизненного цикла веб-запроса и роли серверных скриптов в

формировании ответа.

Освоение инструментария: изучение синтаксиса и функциональных

возможностей языка PHP, включая работу с типами данных, строковыми и

массивными структурами, а также встроенными библиотеками функций.

Разработка функционала: приобретение навыков реализации ключевых

механизмов веб-приложений: обработки HTML-форм, управления файловой

системой, механизмами аутентификации и авторизации пользователей (сессии,

куки).

Архитектурное проектирование: изучение и применение на практике

современных паттернов проектирования, таких как MVC (Model-View-

Controller) и Front Controller, для создания масштабируемого и

поддерживаемого кода, разделения бизнес-логики и представления.

Обеспечение безопасности: изучение методов защиты веб-ресурсов от

распространенных угроз (XSS, CSRF, Session Hijacking) и внедрение практик

безопасной разработки (валидация, санитария данных).

Работа с данными: освоение методов хранения и обмена данными без

использования реляционных СУБД (работа с текстовыми файлами, форматами

JSON, XML, CSV).

Требования к результатам освоения дисциплины:

В результате освоения дисциплины обучающийся должен

демонстрировать следующие результаты образования:

Знать:

 архитектуру веб-приложений и принципы работы связки «Веб-

сервер (Apache/Nginx) + Интерпретатор PHP»;

 стандарты кодирования (PSR) и синтаксические конструкции

языка PHP: типы данных, области видимости переменных, управляющие

конструкции, механизмы подключения файлов;

 структуру и особенности протокола HTTP: назначение заголовков

запроса и ответа, семантику методов (GET, POST, PUT, DELETE), коды

состояния и их влияние на поведение клиента;

 механизмы управления состоянием в протоколе HTTP (Stateless):

принципы работы и различия между Cookies и Sessions, настройки времени

жизни и безопасности сессий;

 встроенные функции PHP для работы с файловой системой,

потоками ввода-вывода, обработки строк, дат и формата JSON;

 теоретические основы шаблонизации и принципы отделения

программного кода от HTML-разметки.

Уметь:

 настраивать локальную среду веб-разработки (WAMP/LAMP

стек), конфигурировать файл php.ini и анализировать логи ошибок веб-сервера;

 принимать и обрабатывать данные, отправленные клиентом через

HTML-формы, осуществлять их валидацию (проверку на корректность) и

фильтрацию (очистку);

 реализовывать механизмы регистрации и авторизации

пользователей, управлять правами доступа к закрытым разделам сайта;

 выполнять операции с файловой системой на сервере: чтение

конфигураций, запись логов, реализация безопасной загрузки файлов (Upload)

от пользователей;

 проектировать и реализовывать простые API-интерфейсы для

обмена данными в формате JSON;

 использовать инструменты отладки и профилирования кода

(xdebug, var_dump, print_r) для поиска и устранения логических ошибок.

В результате освоения учебной дисциплины обучающийся должен

обладать следующими профессиональными компетенциями:

ПК 4.1. Администрировать среды и платформы разработки

информационных ресурсов.

ПК 4.2. Создавать программный код на стороне сервера в соответствии с

техническим заданием (спецификацией) с использованием языков

программирования, библиотек и фреймворков.

ПК 4.3. Осуществлять отладку программного кода на стороне сервера на

уровне программных модулей, межмодульных взаимодействий и

взаимодействий с окружением.

Содержание дисциплины

Семестр № 5

1. Основы и синтаксис языка PHP

Введение в серверное программирование. Роль PHP в веб-разработке.

Принципы работы связки веб-сервера и интерпретатора PHP. Базовый

синтаксис языка: теги <?php ... ?>, инструкции, комментарии. Переменные,

типы данных (скалярные, составные, специальные), приведение типов.

Операторы: арифметические, сравнения, логические, присваивания.

Конструкции для вывода данных: echo, print. Условные

операторы: if, else, elseif, switch. Циклы: while, do-while, for, foreach. Основы

работы с массивами: создание, индексация, ассоциативные массивы,

многомерные массивы.

2. Типы запросов и пользовательские функции

Понятие HTTP-запроса и его методов. Суперглобальные

массивы $_GET и $_POST. Обработка данных, отправленных через HTML-

формы. Различия между методами GET и POST, их безопасность и

применение. Валидация и санитация пользовательского ввода.

Пользовательские функции: объявление, параметры (включая значения по

умолчанию), возврат значений. Области видимости переменных: глобальная,

локальная, суперглобальная. Ключевое слово global. Статические переменные

внутри функций.

3. Работа с данными и состоянием приложения

Протокол HTTP как протокол без состояния (Stateless). Механизмы для

поддержания состояния: Cookies и Sessions. Работа с Cookies: установка

(setcookie()), чтение ($_COOKIE), удаление, параметры безопасности (expire,

path, domain, secure, httponly). Работа с Sessions: старт сессии (session_start()),

сохранение данных в $_SESSION, уничтожение сессии (session_destroy()).

Базовые аспекты безопасности: защита от Session Hijacking, использование

сессионных токенов.

Семестр № 6

4. Расширенные возможности языка PHP

Работа с файловой системой: функции для чтения, записи, удаления

файлов и директорий

(fopen, fclose, fwrite, file_get_contents, file_put_contents, unlink, rmdir).

Обработка ошибок ввода-вывода. Работа с форматами данных: сериализация и

десериализация (serialize, unserialize). Формат JSON: кодирование

(json_encode) и декодирование (json_decode), обработка ошибок JSON.

Использование JSON для хранения и передачи данных в веб-приложениях.

5. Архитектура и безопасность веб-приложений

Принципы архитектуры веб-приложений. Паттерн MVC (Model-View-

Controller): разделение логики, данных и представления. Реализация простого

шаблонизатора для отделения HTML от PHP-кода. Понятие Front Controller и

единой точки входа (index.php). Основы маршрутизации (роутинга).

Безопасность веб-приложений: защита от XSS (кросс-сайтового скриптинга),

CSRF (межсайтовой подделки запроса), SQL-инъекций (в контексте работы с

файлами). Валидация и экранирование данных. Хеширование паролей с

использованием password_hash() и password_verify().

6. Интеграция и оптимизация веб-приложений

Создание простого RESTful API для взаимодействия с клиентской

частью. Обработка различных HTTP-методов (GET, POST, PUT, DELETE) в

PHP. Формирование HTTP-ответов с соответствующими заголовками и

кодами состояния. Буферизация вывода (ob_start, ob_get_clean). Основы

кэширования на стороне сервера для повышения производительности.

Профилирование и отладка PHP-кода: использование var_dump, print_r,

инструментов вроде Xdebug. Логирование ошибок и событий приложения.

3 РАСПРЕДЕЛЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО РАЗДЕЛАМ

Цель методических рекомендаций: помочь студентам при

самостоятельном изучении учебной программы с использованием

лекционных материалов и рекомендуемой учебно-методической литературы.

Номер раздела

данной

дисциплины

Наименование тем, вопросов, вынесенных для

самостоятельного изучения

Семестр № 5

Тема 1. Изучение

дополнительных

возможностей

массивов и функций

в PHP

Рекурсивные функции и их применение. Функции для

работы с

массивами: array_map, array_filter, array_reduce.

Создание и использование callable-типа и анонимных

функций (замыканий). Практика решения

алгоритмических задач на PHP.

Тема 2. Безопасная

обработка

пользовательского

ввода и валидация

данных

Подробное изучение функций фильтрации данных

(filter_var, filter_input). Создание пользовательских

функций валидации для сложных данных (например,

email, URL, номера телефонов). Защита от

распространенных уязвимостей: SQL-инъекции (при

работе с файлами), XSS, CSRF. Использование

токенов в формах.

Тема 3.

Углубленное

изучение

механизмов сессий

и кук

Настройка параметров сессий в php.ini (время жизни,

хранение, использование cookies). Альтернативные

методы хранения сессий (файлы, базы данных –

обзорно). Защита от Session Fixation и Session

Hijacking. Практическая реализация системы

"Запомнить меня" с использованием долгоживущих

кук.

Семестр № 6

Тема 4. Работа с

альтернативными

форматами данных

(XML, YAML).

Чтение и запись XML-файлов с использованием

расширения SimpleXML или DOMDocument. Основы

синтаксиса YAML. Использование библиотеки

(например, Symfony YAML) для парсинга и генерации

YAML в PHP. Сравнение форматов JSON, XML и

YAML для хранения конфигураций и данных.

Тема 5. Изучение

паттернов

проектирования

веб-приложений

Паттерны, применяемые в веб-разработке: Singleton,

Factory, Observer, Dependency Injection (внедрение

зависимостей). Принципы SOLID и их значение для

написания поддерживаемого кода. Анализ и

рефакторинг простого приложения с применением

изученных паттернов.

Тема 6.

Инструменты

отладки и

профилирования

PHP-приложений

Настройка и использование Xdebug для пошаговой

отладки. Анализ производительности кода с помощью

профилировщика (например, Xdebug Profiler

или Blackfire.io). Чтение и интерпретация логов веб-

сервера (Apache/Nginx) и журналов ошибок PHP.

Использование мониторинга для выявления узких

мест в приложении.

https://blackfire.io/

4 КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ ДЛЯ САМОПРОВЕРКИ

1. Виды и формы самостоятельной работы студентов по дисциплине

«Бэкенд-разработка»:

 изучение официальной документации языка PHP;

 выполнение практических заданий по написанию скриптов;

 реализация лабораторных работ и отладка кода;

 подготовка к зачету и экзамену.

2. Методические рекомендации:

Используйте локальный сервер (Denwer) для запуска примеров кода.

При возникновении ошибок анализируйте логи сервера (error.log) и

вывод ошибок интерпретатора.

Оформите отчеты по лабораторным работам, включив листинг кода и

скриншоты работы.

3. Подготовка к аттестации:

Систематизируйте знания по синтаксису и архитектуре приложений.

Убедитесь в понимании различий между клиентским (JS) и серверным

(PHP) кодом.

Перечень информационных технологий

 Для проведения лекционных и лабораторных занятий

рекомендуется использовать программное обеспечение:

1. Debian, Simply Linux, Microsoft Windows. Системное программное

обеспечение

2. LibreOffice. Программное обеспечение для работы с различными

типами документов: текстами, электронными таблицами, базами данных и др.

3. Visual Studio Community. Полнофункциональная, расширяемая и

бесплатная интегрированная среда разработки для создания современных

приложений Android, iOS и Windows, а также веб-приложений и облачных

служб

4. Denwer. Набор дистрибутивов (локальный сервер WAMP) и

программная оболочка, предназначенные для создания и отладки сайтов (веб-

приложений, прочего динамического содержимого интернет-страниц) на

локальном ПК (без необходимости подключения к сети Интернет) под

управлением ОС Windows.

Контрольные вопросы

1. В чем заключается роль серверного языка программирования?

2. Как работает связка «Веб-сервер + Интерпретатор PHP»?

3. Как объявляются переменные в PHP? Правила именования

переменных.

4. Перечислите основные типы данных PHP. Является ли PHP

языком со строгой типизацией?

5. В чем разница между обработкой строк в одинарных (') и двойных

(") кавычках?

6. Как работают операторы сравнения == и ===?

7. Опишите синтаксис цикла foreach. Для чего он используется?

8. Что такое ассоциативный массив? Как добавить элемент в

массив?

9. Какие встроенные функции для работы с массивами вы знаете

(count, array_merge, in_array)?

10. Что такое область видимости переменной? Ключевое слово global.

11. Как передать данные от клиента на сервер? Разница между

методами GET и POST.

12. Что такое суперглобальные массивы? Перечислите их.

13. Как получить доступ к параметрам URL (query string)?

14. Как обработать данные формы на сервере? Валидация empty, isset.

15. Что такое HTTP-заголовки? Как выполнить редирект с помощью

функции header()?

16. Как прочитать содержимое файла в строку (file_get_contents)?

17. Как записать данные в файл? Режимы перезаписи и добавления

(FILE_APPEND).

18. Как обработать загрузку файла на сервер (Upload)? Массив

$_FILES.

19. Что такое сессия? Механизм работы (Session ID). Функции

session_start, session_destroy.

20. Что такое Cookie? Как установить и удалить куку?

21. В чем отличие хранения данных в сессиях и в куках?

22. Как защитить приложение от XSS-атак? Функция htmlspecialchars.

23. Как форматировать дату и время в PHP?

24. Как подключить один PHP-файл к другому? Разница между

include и require.

25. Как прочитать список файлов в директории (scandir)?

26. Что такое формат JSON? Функции json_encode и json_decode.

27. Что такое шаблонизация? Почему важно отделять HTML от PHP-

логики?

28. Объясните понятие Front Controller (Единая точка входа).

29. Как реализовать простую маршрутизацию (Routing) на основе

URL?

30. Как обрабатывать исключения в PHP? Конструкция try-catch.

31. Что такое CSRF-атака? Как использовать токены для защиты

форм?

32. Как отправить электронное письмо из PHP-скрипта?

33. Что такое REST API? Принципы построения.

34. Как реализовать возврат данных в формате JSON для API?

35. Что такое профилирование кода? Функции отладки var_dump,

print_r.

36. Опишите основные компоненты архитектуры MVC (Model-View-

Controller).

37. Как происходит передача данных из Контроллера в

Представление?

38. Меры безопасности при работе с пользовательскими файлами.

39. Что такое рекурсия? Как использовать её для обхода дерева

папок?

40. Коды ответов HTTP (200, 301, 404, 500) и их значение.

41. Области видимости static внутри функции.

42. Анонимные функции и замыкания.

43. Понятие буферизации вывода (ob_start).

44. Основы работы с зависимостями (Composer) – обзорно.

45. Как определить, был ли запрос отправлен через AJAX?

5 ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ

Индивидуальное задание выполняется в течение двух семестров.

Студент должен разработать динамическое веб-приложение на PHP,

реализующее функционал управления контентом и пользователями.

Важное условие: Использование реляционных баз данных (MySQL,

PostgreSQL) в данном курсе не предусмотрено. Все данные должны храниться

в файловой системе (текстовые файлы .txt, форматы .json, .csv или .xml).

Требования к проекту:

Архитектура: Приложение должно быть построено по принципу

разделения логики и представления (использование шаблонов). Рекомендуется

паттерн Front Controller.

Аутентификация: Реализация регистрации и входа пользователей.

Пароли должны храниться в хешированном виде (password_hash).

Использование сессий.

CRUD: Реализация операций создания, чтения, редактирования и

удаления данных (сущностей).

Данные: Хранение данных в файлах JSON или CSV.

Формы: Валидация всех входных данных на сервере. Защита от XSS и

CSRF.

Файлы: Возможность загрузки изображений или документов на сервер

(аватарок, файлов статей).

Примерный перечень предметных областей, на основании которых

может быть сформирован индивидуальный вариант задания (тема веб-

приложения):

1. Личный блог (Flat-file Blog): создание статей, категории,

комментарии (в JSON), админка для автора.

2. Гостевая книга: форма добавления отзыва, сохранение в файл,

модерация отзывов администратором, пагинация.

3. Файловый менеджер: просмотр директорий сервера, создание

папок, загрузка, переименование и удаление файлов.

4. Система тестирования: конструктор тестов (вопросы в JSON),

прохождение теста студентом, расчет результата, сохранение истории.

5. Фотогалерея: массовая загрузка фото, автоматическое создание

превью (если позволяет библиотека GD), альбомы, описание фото.

6. Интернет-магазин (без БД): каталог товаров из CSV, корзина (в

сессии), оформление заказа (сохранение заказа в файл), админка товаров.

7. Система голосования: создание опросов, варианты ответов,

сохранение голосов, защита от накрутки (по IP/Cookie), вывод результатов.

8. Простой форум: создание тем (папки), сообщений (файлы),

профили пользователей, права модераторов.

9. Контактная книга (CRM): карточки клиентов, поиск, фильтрация,

экспорт базы контактов в CSV.

10. Генератор статических сайтов: форма ввода контента, выбор

шаблона, генерация готовых HTML-страниц в папку.

11. Сервис коротких ссылок: админка для создания ссылок, хранение

пар "код-URL" в JSON, редирект, статистика переходов.

12. Органайзер задач (ToDo): личные списки задач для

пользователей, статусы, дедлайны, сохранение в личный JSON-файл

пользователя.

13. Сайт рецептов: добавление рецептов, поиск по ингредиентам,

загрузка фото блюда, избранное.

14. Система техподдержки (Тикеты): создание заявки пользователем,

ответы администратора, смена статуса заявки.

15. Электронный дневник: список студентов (CSV), предметы,

выставление оценок, расчет среднего балла.

16. Агрегатор новостей: парсинг (чтение) RSS-лент других сайтов,

сохранение кэша в файлы, вывод единой лентой.

17. Викторина "Кто хочет стать миллионером": база вопросов в

файле, логика подсказок, таблица рекордов.

18. Сервис для проведения аукционов: лоты (JSON), ставки

пользователей, таймер (логика на сервере), определение победителя.

19. База знаний (Wiki): создание страниц, редактирование контента

(Markdown или HTML), история изменений (версии файлов).

20. Анкетирование: конструктор анкет, сбор ответов в CSV-файл,

выгрузка результатов в Excel.

21. Календарь событий: добавление событий на дату, просмотр

расписания на месяц, напоминания (визуальные).

22. Система управления недвижимостью: объявления о

сдаче/продаже, фото, фильтры, контакты риелтора.

23. Библиотека документов: загрузка doc/pdf файлов, категоризация,

поиск по описанию, учет скачиваний.

24. Сервис "Тайный Санта": регистрация участников, автоматическое

распределение (перемешивание массива), отправка результатов (имитация

email).

25. Чат (Simple Chat): сохранение сообщений в общий лог-файл,

AJAX-обновление (long polling или просто таймер), список онлайн.

26. Калькулятор доставки: админка тарифов (JSON), форма расчета

для клиента, сохранение заявки на доставку.

27. Портфолио фрилансера: админка для добавления проектов,

загрузка скриншотов, редактирование описания "О себе".

28. Система бронирования переговорных: сетка времени, занятие

слота пользователем, отмена брони.

29. Сервис обмена заметками (Pastebin): создание текстовой заметки,

генерация уникальной ссылки, удаление по таймеру или паролю.

30. Учет домашних финансов: доходы/расходы, категории, баланс,

формирование отчета за месяц в HTML.

Примерный план выполнения индивидуальной работы

31. Выбор темы. Согласование функционала с преподавателем.

32. Проектирование данных. Описание структуры JSON-объекта,

который будет описывать сущность (например, Задача: id, текст, дата, статус).

33. HTML-верстка. Создание каркаса приложения (Header, Main,

Footer, контейнеры для списков).

34. Стилизация (CSS). Оформление интерфейса, адаптивность.

35. Разработка Модели (JS). Написание функций для работы с

данными (массивом объектов): добавление, поиск, удаление.

36. Разработка Представления (JS). Написание функций отрисовки

(render), которые превращают данные в HTML-код.

37. Разработка Контроллера (JS). Назначение обработчиков событий

на кнопки, формы, поля ввода.

38. Интеграция с LocalStorage. Добавление сохранения данных при

любом изменении.

39. Отладка. Тестирование всех сценариев использования, проверка

консоли на наличие ошибок.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Тузовский, А. Ф. Проектирование и разработка web-приложений :

учебник для среднего профессионального образования / А. Ф. Тузовский. —

Москва : Издательство Юрайт, 2025. — 219 с. — (Профессиональное

образование). — ISBN 978-5-534-16767-2. — Текст : электронный //

Образовательная платформа Юрайт [сайт]. — URL:

https://urait.ru/bcode/565693

2. Сысолетин, Е. Г. Разработка интернет-приложений : учебник для

среднего профессионального образования / Е. Г. Сысолетин, С. Д. Ростунцев.

— Москва : Издательство Юрайт, 2025. — 80 с. — (Профессиональное

образование). — ISBN 978-5-534-19603-0. — Текст : электронный //

Образовательная платформа Юрайт [сайт]. — URL:

https://urait.ru/bcode/565692

3. Полуэктова, Н. Р. Разработка веб-приложений : учебник для

среднего профессионального образования / Н. Р. Полуэктова. — 2-е изд. —

Москва : Издательство Юрайт, 2025. — 204 с. — (Профессиональное

образование). — ISBN 978-5-534-18644-4. — Текст : электронный //

Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/567621

4. Никсон, Р. Создаем динамические веб-сайты с помощью PHP,

MySQL, JavaScript, CSS и HTML5 / Робин Никсон. – 5-е изд. – Санкт-Петербург

: Питер, 2021. – 816 с.

5. Котеров, Д. В. PHP 7. В подлиннике / Д. В. Котеров, И. В.

Симдянов. – Санкт-Петербург : БХВ-Петербург, 2019. – 1088 с.

6. Скляр, Д. PHP. Рецепты программирования / Дэвид Скляр, Адам

Трахтенберг. – 3-е изд. – Москва : Эксмо, 2017. – 784 с.

7. Веллинг, Л. Разработка веб-приложений с помощью PHP и MySQL

/ Люк Веллинг, Лаура Томсон. – 5-е изд. – Москва : Вильямс, 2019. – 1072 с.

8. Локхарт, Д. Современный PHP: новые возможности и передовой

опыт / Джош Локхарт. – Москва : ДМК Пресс, 2016. – 304 с.

9. Зандстра, М. PHP: объекты, шаблоны и методики

программирования / Мэтт Зандстра. – 5-е изд. – Москва : Вильямс, 2019. – 576

с.

10. Официальная документация PHP [Электронный ресурс]. – Режим

доступа: https://www.php.net/manual/ru/ – Загл. с экрана.

11. PHP: The Right Way (PHP: Правильный путь) [Электронный

ресурс]. – Режим доступа: https://phptherightway.com/ – Загл. с экрана.

12. Стандарты PSR (PHP Standards Recommendations) [Электронный

ресурс] // PHP-FIG. – Режим доступа: https://www.php-fig.org/psr/ – Загл. с

экрана.

https://urait.ru/bcode/567621
https://www.google.com/url?sa=E&q=https%3A%2F%2Fwww.php.net%2Fmanual%2Fru%2F
https://www.google.com/url?sa=E&q=https%3A%2F%2Fphptherightway.com%2F
https://www.google.com/url?sa=E&q=https%3A%2F%2Fwww.php-fig.org%2Fpsr%2F

